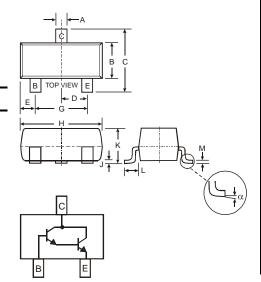


MMBTA28


NPN SURFACE MOUNT DARLINGTON TRANSISTOR

Features

- Epitaxial Planar Die Construction
- Ideal for Low Power Amplification and Switching
- High Current Gain
- Lead, Halogen and Antimony Free, RoHS Compliant "Green" Device (Notes 3 and 4)

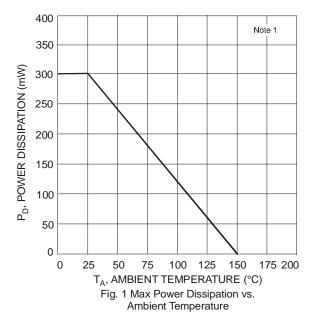
Mechanical Data

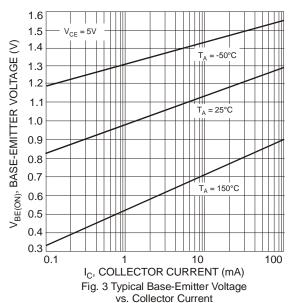
- Case: SOT-23
- Case Material: Molded Plastic. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020D
- Terminal Connections: See Diagram
- Terminals: Solderable per MIL-STD-202, Method 208
- Lead Free Plating (Matte Tin Finish annealed over Alloy 42 leadframe).
- Marking Information: See Page 3
 Ordering Information: See Page 3
 Weight: 0.008 grams (approximate)

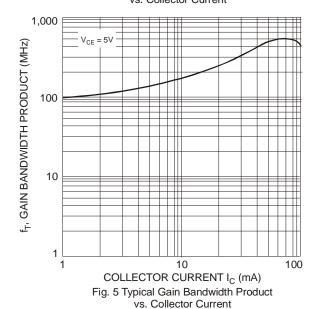
SOT-23									
Dim	Min	Max							
Α	0.37	0.51							
В	1.20	1.40 2.50 1.03 0.60 2.05							
С	2.30								
D	0.89								
E	0.45								
G	1.78								
Η	2.80	3.00							
7	0.013	0.10							
K	0.903	1.10							
L	0.45	0.61							
M	0.085	0.180							
α	0°	8°							
All Dimensions in mm									

Maximum Ratings @T_A = 25°C unless otherwise specified

Characteristic	Symbol	Value	Unit
Collector-Base Voltage	V_{CBO}	80	V
Collector-Emitter Voltage	V_{CEO}	80	V
Emitter-Base Voltage	V_{EBO}	12	V
Collector Current - Continuous	lc	500	mA
Power Dissipation (Note 1)	P _D	300	mW
Thermal Resistance, Junction to Ambient (Note 1)	$R_{\theta JA}$	417	°C/W
Operating and Storage and Temperature Range	T _J , T _{STG}	-55 to +150	°C


Electrical Characteristics @T_A = 25°C unless otherwise specified


Characteristic	Symbol	Min	Max	Unit	Test Condition					
OFF CHARACTERISTICS (Note 2)										
Collector-Base Breakdown Voltage	V _{(BR)CBO}	80		V	$I_C = 100 \mu A I_E = 0$					
Emitter-Base Breakdown Voltage	V _{(BR)EBO}	12	_	V	$I_E = 100 \mu A I_C = 0$					
Collector-Emitter Breakdown Voltage	V _{(BR)CEO}	80	_	V	$I_C = 100 \mu A I_B = 0$					
Collector Cutoff Current	I _{CBO}		100	nA	$V_{CB} = 60V, I_{E} = 0$					
Collector Cuton Current	ICES	_	500	nA	V _{CE} = 10V					
Emitter Cutoff Current	I _{EBO}	_	100	nA	$V_{EB} = 10V, I_{C} = 0$					
ON CHARACTERISTICS (Note 2)										
DC Current Gain	h _{FE}	10,000			$I_C = 10mA, V_{CE} = 5.0V$					
DC Current Gain		10,000			$I_C = 100 \text{mA}, V_{CE} = 5.0 \text{V}$					
Collector-Emitter Saturation Voltage	V _{CE(SAT)}		1.5	V	$I_C = 100 \text{mA}, I_B = 100 \mu \text{A}$					
Base-Emitter Saturation Voltage	V _{BE(SAT)}	_	2.0	V	I _C = 100mA, V _{CE} = 5.0V					
SMALL SIGNAL CHARACTERISTICS										
Output Capacitance	C_{obo}	8.0 Typical		pF	$V_{CB} = 10V$, $f = 1.0MHz$, $I_E = 0$					
Input Capacitance	C _{ibo}	15 Typical		pF	$V_{EB} = 0.5V$, $f = 1.0MHz$, $I_{C} = 0$					
Current Gain-Bandwidth Product	f _T	125		MHz	$V_{CE} = 5.0V, I_{C} = 10mA,$ f = 100MHz					


Notes:

- 1. Device mounted on FR-4 PCB, 1.6x1.6x0.06 inch pad layout as shown on Diodes Inc. suggested pad layout document AP02001 which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf.
- 2. Short duration pulse test used to minimize self-heating effect.
- 3. No purposefully added lead. Halogen and Antimony Free.
- 4. Product manufactured with Data Code V9 (week 33, 2008) and newer are built with Green Molding Compound. Product manufactured prior to Date Code V9 are built with Non-Green Molding Compound and may contain Halogens or Sb₂O₃ Fire Retardants.

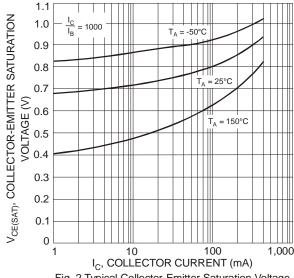
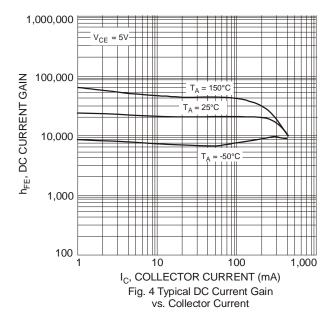
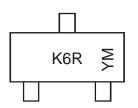



Fig. 2 Typical Collector-Emitter Saturation Voltage vs. Collector Current



Ordering Information (Note 5)

Part Number	Packaging	Shipping			
MMBTA28-7-F	SOT-23	3000/Tape & Reel			

Notes: 5. For packaging details, go to our website at http://www.diodes.com/datasheets/ap02007.pdf.

Marking Information

K6R = Product Type Marking Code YM = Date Code Marking Y = Year ex: T = 2006 M = Month ex: 9 = September

Date Code Key

Year	2006		2007		2008	20	09	2010		2011	2	2012	
Code	Т		U		V		W			Υ		Z	
Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Code	1	2	3	4	5	6	7	8	9	0	N	D	

IMPORTANT NOTICE

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.