BC807-16W / -25W / -40W

PNP SURFACE MOUNT TRANSISTOR

Features

- Ideally Suited for Automatic Insertion
- Epitaxial Planar Die Construction
- For Switching, AF Driver and Amplifier Applications
- Complementary NPN Types Available (BC817-xxW)
- Lead Free By Design/RoHS Compliant (Note 1)
- "Green" Device (Note 2)

Mechanical Data

- Case: SOT-323
- Case Material: Molded Plastic. "Green" Molding Compound. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020C
- Terminals: Finish - Matte Tin annealed over Alloy 42 leadframe. Solderable per MIL-STD-202, Method 208
- Pin Connections: See Diagram
- Marking:

P/N	Marking
BC807-16W	K5A
BC807-25W	K5B
BC807-40W	K5C

- Ordering \& Date Code Information: See Page 3
- Approximate Weight: 0.006 grams

Maximum Ratings $@ T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified

Characteristic	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	-45	V
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	-5.0	V
Collector Current	I_{C}	-500	mA
Peak Collector Current	I_{CM}	-1000	mA
Peak Emitter Current	$\mathrm{I}_{\text {EM }}$	-1000	mA
Power Dissipation at $\mathrm{T}_{\mathrm{SB}}=50^{\circ} \mathrm{C}$ (Note 3)	P_{d}	200	mW
Thermal Resistance, Junction to Ambient Air (Note 3)	$\mathrm{R}_{\text {日JA }}$	625	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating and Storage Temperature Range	$\mathrm{T}_{\mathrm{j},}, \mathrm{T}_{\text {STG }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

Electrical Characteristics $@ T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified

Characteristic (Note 4)	Symbol	Min	Typ	Max	Unit	Test Condition
DC Current Gain Current Gain Group -16 -25 -40 Current Gain Group -16 -25 -40	$\mathrm{hfE}^{\text {fe }}$	$\begin{gathered} \hline 100 \\ 160 \\ 250 \\ 60 \\ 100 \\ 170 \end{gathered}$	-	$\begin{aligned} & \hline 250 \\ & 400 \\ & 600 \\ & - \end{aligned}$	-	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=-1.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-100 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CE}}=-1.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-300 \mathrm{~mA} \end{aligned}$
Collector-Emitter Saturation Voltage	$\mathrm{V}_{\text {CE(SAT) }}$	-	-	-0.7	V	$\mathrm{IC}_{\mathrm{C}}=-500 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=-50 \mathrm{~mA}$
Base-Emitter Voltage	$V_{B E}$	-	-	-1.2	V	$\mathrm{V}_{\text {CE }}=-1.0 \mathrm{~V}, \mathrm{l} \mathrm{IC}=-300 \mathrm{~mA}$
Collector-Emitter Cutoff Current	Ices	-	-	$\begin{aligned} & \hline-100 \\ & -5.0 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & V_{C E}=-45 \mathrm{~V} \\ & V_{C E}=-25 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=150^{\circ} \mathrm{C} \end{aligned}$
Emitter-Base Cutoff Current	Iebo	-	-	-100	nA	$\mathrm{V}_{\text {EB }}=-4.0 \mathrm{~V}$
Gain Bandwidth Product	f_{T}	100	-	-	MHz	$\begin{aligned} & V_{C E}=-5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}, \\ & f=50 \mathrm{MHz} \end{aligned}$
Collector-Base Capacitance	$\mathrm{C}_{\text {cbo }}$	-	-	12	pF	$\mathrm{V}_{\mathrm{CB}}=-10 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$

Notes: 1. No purposefully added lead.
2. Diodes Inc's "Green" policy can be found on our website at http://www.diodes.com/products/lead_free/index.php.
3. Device mounted on FR-4 PCB, 1 inch $\times 0.85$ inch $\times 0.062$ inch; pad layout as shown on Diodes Inc. suggested pad layout document AP02001, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf.
4. Short duration pulse test used to minimize self-heating effect.

Fig. 3, Collector Sat. Voltage vs Collector Current

$-\mathrm{V}_{\text {CE }}$, COLLECTOR-EMITTER VOLTAGE (V)
Fig. 5, Typical Emitter-Collector Characteristics

Fig. 2, Gain-Bandwidth Product vs Collector Current

Fig. 4, DC Current Gain vs Collector Current

$-\mathrm{V}_{\mathrm{CE}}$, COLLECTOR-EMITTER VOLTAGE (V)
Fig. 6, Typical Emitter-Collector Characteristics

Ordering Information (Note 5)

Device*	Packaging	Shipping
BC807-xxW-7	SOT-323	$3000 /$ Tape \& Reel

Notes: 5. For Packaging Details, go to our website at http://www.diodes.com/datasheets/ap02007.pdf.

* $x x=$ gain group, e.g. BC807-16W-7.

Marking Information

Date Code Key

Year	2004	2005	2006	2007	2008	2009	2010	2011	2012
Code	R	S	T	U	V	W	X	Y	Z

Month	Jan	Feb	March	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Code	1	2	3	4	5	6	7	8	9	O	N	D

MPORTANT NOTICE

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless againstall damages.

LIFE SUPPORT

Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.

