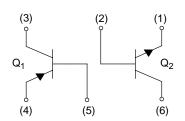
Dual General Purpose Transistor

The NST3946DXV6T1 device is a spin-off of our popular SOT-23/SOT-323 three-leaded device. It is designed for general purpose amplifier applications and is housed in the SOT-563 six-leaded surface mount package. By putting two discrete devices in one package, this device is ideal for low-power surface mount applications where board space is at a premium.

- h_{FE}, 100-300
- Low $V_{CE(sat)}$, $\leq 0.4 \text{ V}$
- Simplifies Circuit Design
- Reduces Board Space
- Reduces Component Count
- Lead-Free Solder Plating

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector- Emitter Voltage (NPN) (PNP)	V _{CEO}	40 -40	Vdc
Collector- Base Voltage (NPN) (PNP)	V _{CBO}	60 -40	Vdc
Emitter- Base Voltage (NPN) (PNP)	V _{EBO}	6.0 -5.0	Vdc
Collector Current - Continuous (NPN) (PNP)	lc	200 -200	mAdc
Electrostatic Discharge	ESD	HBM>16000, MM>2000	V


THERMAL CHARACTERISTICS

Characteristic (One Junction Heated)	Symbol	Max	Unit
Total Device Dissipation $T_A = 25$ °C Derate above 25°C	P _D	357 (Note 1) 2.9 (Note 1)	mW mW/°C
Thermal Resistance Junction-to-Ambient	$R_{ heta JA}$	350 (Note 1)	°C/W
Characteristic (Both Junctions Heated)	Symbol	Max	Unit
Total Device Dissipation $T_A = 25^{\circ}C$ Derate above 25°C	P _D	500 (Note 1) 4.0 (Note 1)	mW mW/°C

1. FR-4 @ Minimum Pad

http://onsemi.com

NST3946DXV6T1*

*Q1 PNP Q2 NPN

SOT-563 CASE 463A PLASTIC

MARKING DIAGRAM

46 = Specific Device Code

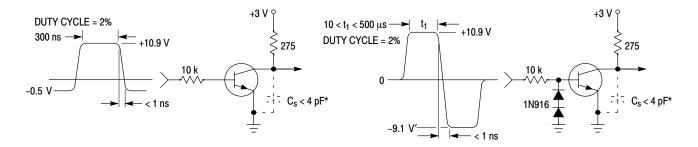
D = Date Code

ORDERING INFORMATION

Device	Package	Shipping
NST3946DXV6T1	SOT-563	4 mm pitch 4000/Tape & Reel
NST3946DXV6T5	SOT-563	2 mm pitch 8000/Tape & Reel

Characteristic (Both Junctions Heated)	Symbol	Max	Unit
Thermal Resistance Junction-to-Ambient	$R_{ heta JA}$	250 (Note 1)	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	- 55 to +150	°C

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)


Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector - Emitter Breakdown Voltage (Note 2) ($I_C = 1.0 \text{ mAdc}, I_B = 0$) ($I_C = -1.0 \text{ mAdc}, I_B = 0$)	(NPN) (PNP)	V _(BR) CEO	40 -40	- -	Vdc
Collector - Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$) ($I_C = -10 \mu Adc, I_E = 0$)	(NPN) (PNP)	V _(BR) CBO	60 -40		Vdc
Emitter- Base Breakdown Voltage ($I_E = 10 \mu Adc$, $I_C = 0$) ($I_E = -10 \mu Adc$, $I_C = 0$)	(NPN) (PNP)	V _{(BR)EBO}	6.0 -5.0		Vdc
Base Cutoff Current $(V_{CE} = 30 \text{ Vdc}, V_{EB} = 3.0 \text{ Vdc})$ $(V_{CE} = -30 \text{ Vdc}, V_{EB} = -3.0 \text{ Vdc})$	(NPN) (PNP)	I _{BL}		50 -50	nAdc
Collector Cutoff Current (V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc) (V _{CE} = -30 Vdc, V _{EB} = -3.0 Vdc)	(NPN) (PNP)	I _{CEX}		50 -50	nAdc
ON CHARACTERISTICS (Note 2)					
DC Current Gain $ \begin{aligned} &(I_C = 0.1 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}) \\ &(I_C = 1.0 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}) \\ &(I_C = 10 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}) \\ &(I_C = 50 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}) \\ &(I_C = 100 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}) \end{aligned} $	(NPN)	h _{FE}	40 70 100 60 30	300	-
$ \begin{array}{l} (I_{C} = -0.1 \text{ mAdc, } V_{CE} = -1.0 \text{ Vdc}) \\ (I_{C} = -1.0 \text{ mAdc, } V_{CE} = -1.0 \text{ Vdc}) \\ (I_{C} = -10 \text{ mAdc, } V_{CE} = -1.0 \text{ Vdc}) \\ (I_{C} = -50 \text{ mAdc, } V_{CE} = -1.0 \text{ Vdc}) \\ (I_{C} = -100 \text{ mAdc, } V_{CE} = -1.0 \text{ Vdc}) \\ \end{array} $	(PNP)		60 80 100 60 30	- 300 - -	
Collector - Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc) (I _C = 50 mAdc, I _B = 5.0 mAdc)	(NPN)	V _{CE(sat)}	- -	0.2 0.3	Vdc
$(I_C = -10 \text{ mAdc}, I_B = -1.0 \text{ mAdc})$ $(I_C = -50 \text{ mAdc}, I_B = -5.0 \text{ mAdc})$	(PNP)		- -	-0.25 -0.4	
Base - Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$) ($I_C = 50 \text{ mAdc}$, $I_B = 5.0 \text{ mAdc}$)	(NPN)	V _{BE(sat)}	0.65 -	0.85 0.95	Vdc
$(I_C = -10 \text{ mAdc}, I_B = -1.0 \text{ mAdc})$ $(I_C = -50 \text{ mAdc}, I_B = -5.0 \text{ mAdc})$	(PNP)		-0.65 -	-0.85 -0.95	

^{2.} Pulse Test: Pulse Width $\leq 300~\mu s;$ Duty Cycle $\leq 2.0\%.$

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted) (Continued)

Characteristic			Symbol	Min	Max	Unit
SMALL- SIGNAL	CHARACTERISTICS					
	andwidth Product $V_{CE} = 20 \text{ Vdc, f} = 100 \text{ MHz}$ (NF) $V_{CE} = -20 \text{ Vdc, f} = 100 \text{ MHz}$,	f _T	300 250		MHz
, OD .	$I_E = 0, f = 1.0 \text{ MHz}$ (NF , $I_E = 0, f = 1.0 \text{ MHz}$) (PN	,	C _{obo}	- -	4.0 4.5	pF
,	$I_C = 0, f = 1.0 \text{ MHz}$ (NF , $I_C = 0, f = 1.0 \text{ MHz}$) (PN	,	C _{ibo}		8.0 10.0	pF
	C = 1.0 mAdc, f = 1.0 kHz) I _C = -1.0 mAdc, f = 1.0 kHz)	(NPN) (PNP)	h _{ie}	1.0 2.0	10 12	kΩ
	Ratio $_{C} = 1.0 \text{ mAdc, } f = 1.0 \text{ kHz})$ $I_{C} = -1.0 \text{ mAdc, } f = 1.0 \text{ kHz})$	(NPN) (PNP)	h _{re}	0.5 0.1	8.0 10	X 10 ^{- 4}
	rent Gain _C = 1.0 mAdc, f = 1.0 kHz) I _C = -1.0 mAdc, f = 1.0 kHz)	(NPN) (PNP)	h _{fe}	100 100	400 400	-
	c = 1.0 mAdc, f = 1.0 kHz) I _C = -1.0 mAdc, f = 1.0 kHz)	(NPN) (PNP)	h _{oe}	1.0 3.0	40 60	μmhos
Noise Figure $ (V_{CE} = 5.0 \text{ Vdc}, I_{C} = 100 \mu\text{Adc}, R_{S} = 1.0 \text{ k } \Omega, f = 1.0 \text{ kHz}) \\ (V_{CE} = -5.0 \text{ Vdc}, I_{C} = -100 \mu\text{Adc}, R_{S} = 1.0 \text{ k } \Omega, f = 1.0 \text{ kHz}) \\ (PNP) $		NF		5.0 4.0	dB	
SWITCHING CH	ARACTERISTICS					
Delay Time	$(V_{CC} = 3.0 \text{ Vdc}, V_{BE} = -0.5 \text{ Vdc})$ $(V_{CC} = -3.0 \text{ Vdc}, V_{BE} = 0.5 \text{ Vdc})$	(NPN) (PNP)	t _d	-	35 35	
Rise Time	$(I_C = 10 \text{ mAdc}, I_{B1} = 1.0 \text{ mAdc})$ $(I_C = -10 \text{ mAdc}, I_{B1} = -1.0 \text{ mAdc})$	(NPN) (PNP)	t _r	-	35 35	ns ns
Storage Time	$(V_{CC} = 3.0 \text{ Vdc}, I_{C} = 10 \text{ mAdc})$ $(V_{CC} = -3.0 \text{ Vdc}, I_{C} = -10 \text{ mAdc})$	(NPN) (PNP)	t _S	-	200 225	
Fall Time	$(I_{B1} = I_{B2} = 1.0 \text{ mAdc})$ $(I_{B1} = I_{B2} = -1.0 \text{ mAdc})$	(NPN) (PNP)	t _f		50 75	ns

(NPN)

* Total shunt capacitance of test jig and connectors

Figure 1. Delay and Rise Time Equivalent Test Circuit

Figure 2. Storage and Fall Time Equivalent Test Circuit

TYPICAL TRANSIENT CHARACTERISTICS

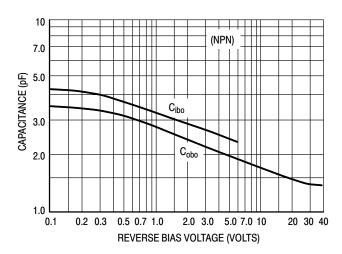
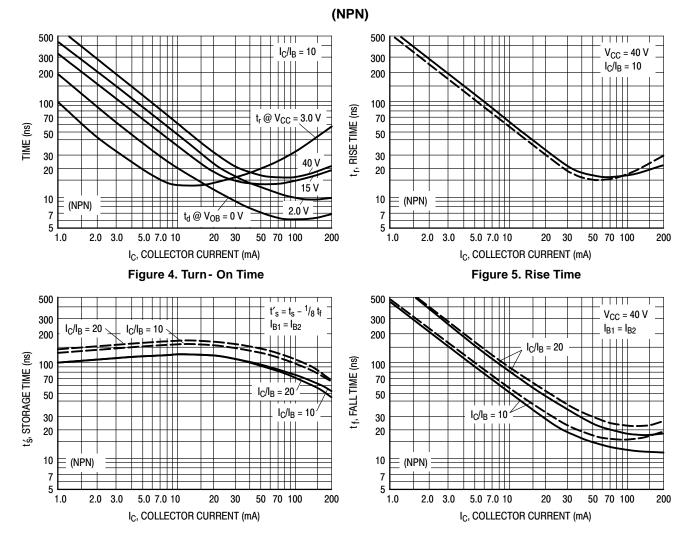



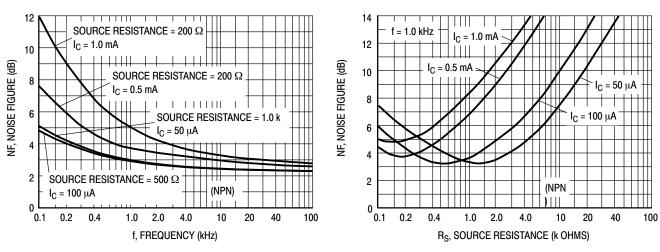
Figure 3. Capacitance

Figure 6. Storage Time

Figure 7. Fall Time

TYPICAL AUDIO SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE VARIATIONS

 $(V_{CE} = 5.0 \text{ Vdc}, T_A = 25^{\circ}\text{C}, Bandwidth = 1.0 \text{ Hz})$



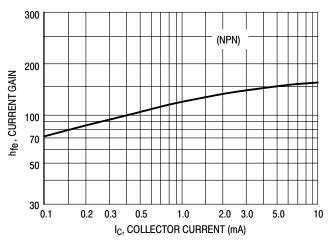
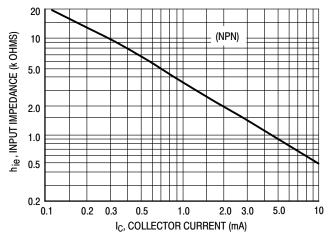

Figure 8. Noise Figure

Figure 9. Noise Figure

(NPN)

h PARAMETERS


 $(V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz}, T_A = 25^{\circ}\text{C})$

100 (NPN) 50 (NPN) 20 (NPN) 50 (NPN) 50

Figure 10. Current Gain

Figure 11. Output Admittance

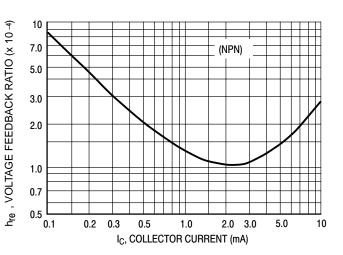


Figure 12. Input Impedance

Figure 13. Voltage Feedback Ratio

(NPN)

TYPICAL STATIC CHARACTERISTICS

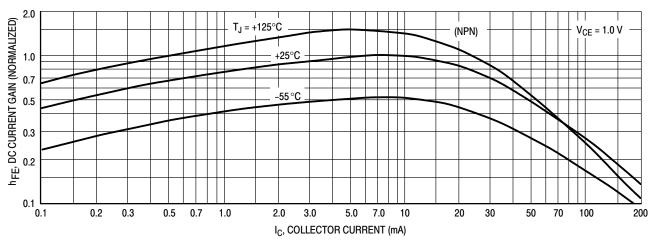


Figure 14. DC Current Gain

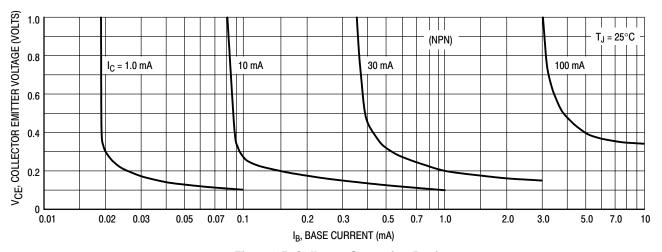


Figure 15. Collector Saturation Region

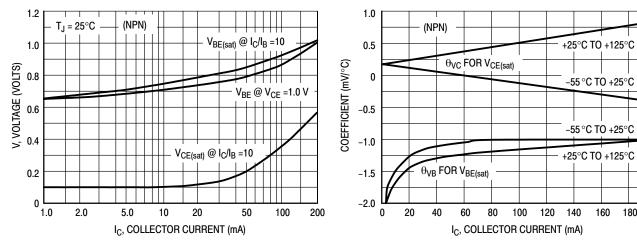
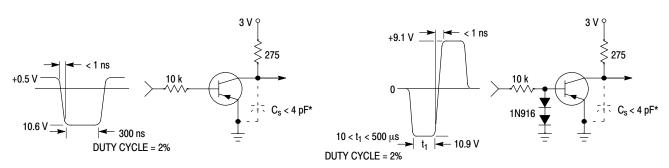



Figure 16. "ON" Voltages

Figure 17. Temperature Coefficients

180 200

(PNP)

* Total shunt capacitance of test jig and connectors

Figure 18. Delay and Rise Time Equivalent Test Circuit

Figure 19. Storage and Fall Time Equivalent Test Circuit

TYPICAL TRANSIENT CHARACTERISTICS

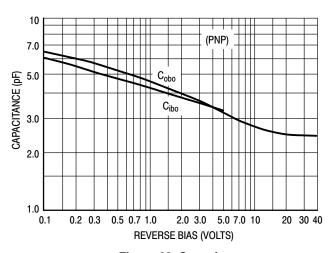


Figure 20. Capacitance

 $T_J = 25^{\circ}C$ $T_J = 125^{\circ}C$ 500 500 (PNP) $I_C/I_B = 10$ $V_{CC} = 40 \text{ V}$ 300 300 $I_{B1} = I_{B2}$ 200 200 $I_C/I_B = 20$ tf, FALL TIME (ns) 100 100 70 70 TIME (ns) $t_r @ V_{CC} = 3.0 V$ 50 50 30 30 $I_C/I_B = 10$ 20 20 10 10 7 $t_{d} @ V_{OB} = 0 V$ 5 5 1.0 2.0 3.0 5.0 7.0 10 20 30 50 70 100 1.0 2.0 3.0 5.0 7.0 10 20 30 200 50 70 100 200 IC, COLLECTOR CURRENT (mA) IC, COLLECTOR CURRENT (mA)

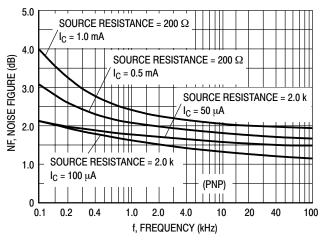

Figure 21. Turn - On Time

Figure 22. Fall Time

(PNP)

TYPICAL AUDIO SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE VARIATIONS

 $(V_{CE} = -5.0 \text{ Vdc}, T_A = 25^{\circ}\text{C}, Bandwidth = 1.0 \text{ Hz})$

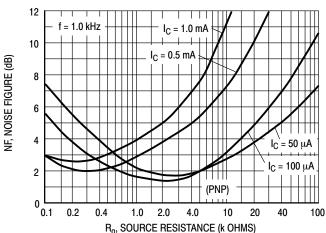
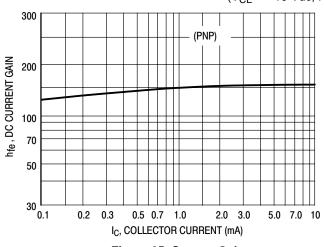



Figure 23.

Figure 24.

h PARAMETERS

 $(V_{CE} = -10 \text{ Vdc}, f = 1.0 \text{ kHz}, T_A = 25^{\circ}\text{C})$

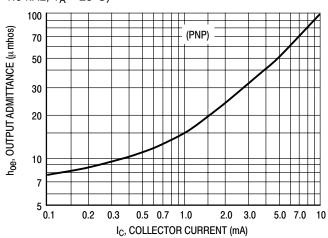


Figure 25. Current Gain

20 h_{ie}, INPUT IMPEDANCE (k OHMS) (PNP) 10 7.0 5.0 3.0 2.0 1.0 0.7 0.5 0.3 2.0 3.0 0.1 0.2 0.3 0.5 0.7 1.0 5.0 7.0 10 IC, COLLECTOR CURRENT (mA)

Figure 26. Output Admittance

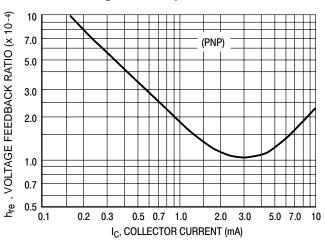


Figure 27. Input Impedance

Figure 28. Voltage Feedback Ratio

(PNP)

TYPICAL STATIC CHARACTERISTICS

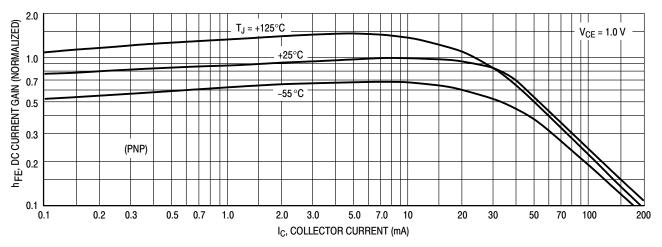


Figure 29. DC Current Gain

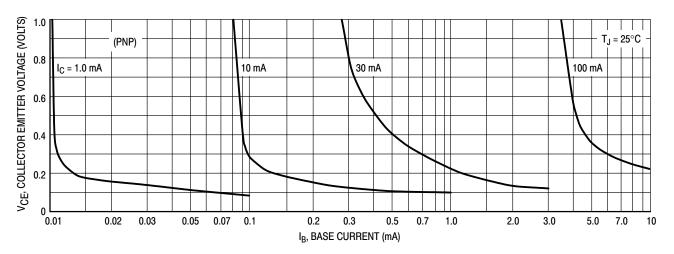


Figure 30. Collector Saturation Region

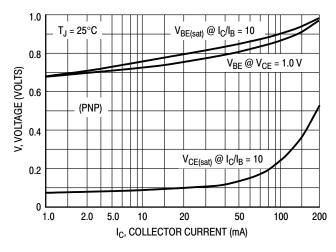


Figure 31. "ON" Voltages

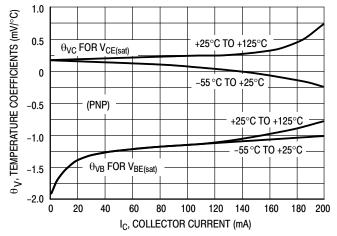
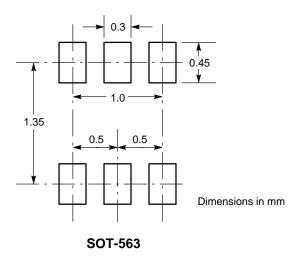



Figure 32. Temperature Coefficients

INFORMATION FOR USING THE SOT-563 SURFACE MOUNT PACKAGE MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS

Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor packages must be the correct size to insure proper solder connection

interface between the board and the package. With the correct pad geometry, the packages will self align when subjected to a solder reflow process.

SOT-563 POWER DISSIPATION

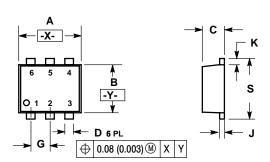
The power dissipation of the SOT-563 is a function of the pad size. This can vary from the minimum pad size for soldering to a pad size given for maximum power dissipation. Power dissipation for a surface mount device is determined by $T_{J(max)}$, the maximum rated junction temperature of the die, $R_{\theta JA}$, the thermal resistance from the device junction to ambient, and the operating temperature, T_A . Using the values provided on the data sheet for the SOT-563 package, P_D can be calculated as follows:

$$P_D = \frac{T_{J(max)} - T_A}{R_{\theta JA}}$$

The values for the equation are found in the maximum ratings table on the data sheet. Substituting these values into the equation for an ambient temperature T_A of 25°C, one can calculate the power dissipation of the device which in this case is 150 milliwatts.

$$P_D = \frac{150^{\circ}\text{C} - 25^{\circ}\text{C}}{833^{\circ}\text{C/W}} = 150 \text{ milliwatts}$$

The 833°C/W for the SOT-563 package assumes the use of the recommended footprint on a glass epoxy printed circuit board to achieve a power dissipation of 150 milliwatts. There are other alternatives to achieving higher power dissipation from the SOT-563 package. Another alternative would be to use a ceramic substrate or an aluminum core board such as Thermal Clad[®]. Using a board material such as Thermal Clad, an aluminum core board, the power dissipation can be doubled using the same footprint.


SOLDERING PRECAUTIONS

The melting temperature of solder is higher than the rated temperature of the device. When the entire device is heated to a high temperature, failure to complete soldering within a short time could result in device failure. Therefore, the following items should always be observed in order to minimize the thermal stress to which the devices are subjected.

- Always preheat the device.
- The delta temperature between the preheat and soldering should be 100°C or less.*
- When preheating and soldering, the temperature of the leads and the case must not exceed the maximum temperature ratings as shown on the data sheet. When using infrared heating with the reflow soldering method, the difference shall be a maximum of 10°C.
- The soldering temperature and time shall not exceed 260°C for more than 10 seconds.
- When shifting from preheating to soldering, the maximum temperature gradient shall be 5°C or less.
- After soldering has been completed, the device should be allowed to cool naturally for at least three minutes.
 Gradual cooling should be used as the use of forced cooling will increase the temperature gradient and result in latent failure due to mechanical stress.
- Mechanical stress or shock should not be applied during cooling.
- * Soldering a device without preheating can cause excessive thermal shock and stress which can result in damage to the device

PACKAGE DIMENSIONS

SOT-563, 6 LEAD CASE 463A-01 **ISSUE O**

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: MILLIMETERS
 MAXIMUM LEAD THICKNESS INCLUDES LEAD
- FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	1.50	1.70	0.059	0.067
В	1.10	1.30	0.043	0.051
С	0.50	0.60	0.020	0.024
D	0.17	0.27	0.007	0.011
G	0.50 BSC		0.020	BSC
J	0.08	0.18	0.003	0.007
K	0.10	0.30	0.004	0.012
-	1.50	1.70	0.050	0.067

STYLE 1:	
PIN 1.	EMITTER 1
2.	BASE 1
3.	COLLECTOR 2
4.	EMITTER 2

6. COLLECTOR 1

5. BASE 2

STYLE 2: PIN 1. EMITTER 1 2. EMITTER2 3. BASE 2 COLLECTOR 2 BASE 1 COLLECTOR 1

STYLE 3: PIN 1. CATHODE 1 2. CATHODE 1 3. ANODE/ANODE 2 4. CATHODE 2 5. CATHODE 2

ANODE/ANODE 1

PIN 1. COLLECTOR 2. COLLECTOR 3. BASE 4. EMITTER 5. COLLECTOR 6. COLLECTOR

Thermal Clad is a registered trademark of the Bergquist Company.

ON Semiconductor and War registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051

Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative

NST3946DXV6T1/D