

MMPQ6700

TRANSISTOR TYPE								
C1	В1	E1	&	C2	B2	E2	NPN	
СЗ	ВЗ	E3	&	C4	В4	E4	PNP	

Quad NPN & PNP General Purpose Amplifier

These complementary devices can be used in switches with collector currents of 10 μ A to 100 mA. These devices are best used when space is the primary consideration. Sourced from Process 23 & 66. See 2N3904 (NPN) & 2N3906 (PNP) for characteristics.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V_{CEO}	Collector-Emitter Voltage	40	V
V _{CBO}	Collector-Base Voltage	40	V
V _{EBO}	Emitter-Base Voltage	5.0	V
Ic	Collector Current - Continuous	200	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

- 1) These ratings are based on a maximum junction temperature of 150 degrees C.
- 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.
- 3) All voltages (V) and currents (A) are negative polarity for PNP transistors.

Thermal Characteristics TA = 25°C unless otherwise noted

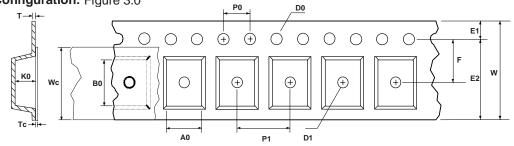
Symbol	Characteristic	Max	Units
		MMPQ6700	
P_D	Total Device Dissipation Derate above 25°C	1000 8.0	mW mW/°C
R ₀ JA	Thermal Resistance, Junction to Ambient Effective 4 Die Each Die	125 240	°C/W °C/W

© 1997 Fairchild Semiconductor Corporation

Quad NPN & PNP General Purpose Amplifier (continued)

Electrical Characteristics TA = 25°C unless otherwise noted									
Symbol	Parameter	Test Conditions	Min	Max	Units				
OFF CHAI	RACTERISTICS								
$V_{(BR)CEO}$	Collector-Emitter Breakdown Voltage*	$I_C = 10 \text{ mA}, I_B = 0$	40		V				
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_C = 10 \mu\text{A}, \ I_E = 0$	40		V				
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_E = 10 \mu A, I_C = 0$	5.0		V				
I _{CBO}	Collector-Cutoff Current	$V_{CB} = 30 \text{ V}, I_{E} = 0$		50	nA				
I _{EBO}	Emitter-Cutoff Current	V _{EB} = 4.0 V, I _C = 0		50	nA				
h _{FE}	ACTERISTICS* DC Current Gain	$V_{CE} = 1.0 \text{ V}, I_{C} = 0.1 \text{ mA}$ $V_{CE} = 1.0 \text{ V}, I_{C} = 1.0 \text{ mA}$ $V_{CE} = 1.0 \text{ V}, I_{C} = 10 \text{ mA}$	30 50 70						
V _{CE(sat)}	Collector-Emitter Saturation Voltage	I _C = 10 mA, I _B = 1.0 mA		0.25	V				
V _{BE(sat)}	Base-Emitter Saturation Voltage	$I_C = 10 \text{ mA}, I_B = 1.0 \text{ mA}$		0.90	V				
	GNAL CHARACTERISTICS								
C _{ob}	Output Capacitance	V _{CB} = 5.0 V, f = 100 kHz		4.5	pF				
C _{ib}	Input Capacitance	$V_{BE} = 0.5 \text{ V}, f = 100 \text{ kHz}$ PNP $V_{BE} = 0.5 \text{ V}, f = 100 \text{ kHz}$ NPN		10 8.0	pF pF				
f⊤	Current-Gain Bandwidth Product	I _C = 10 mA, V _{CE} = 20 V, f = 100 MHz	200		MHz				

^{*}Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%

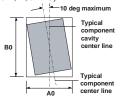

SOIC-16 Tape and Reel Data FAIRCHILD SEMICONDUCTOR TA SOIC(16lds) Packaging Configuration: Figure 1.0 FAIRCHILD **Packaging Description:** Packaging Description: SOIC-16 parts are shipped in tape. The carrier tape is made from a dissipative (carbon filled) polycarbonate resin. The cover tape is a multilayer film (Heat Activated Adhesive in nature) primarily composed of polyester film, adhesive layer, sealant, and anti-static sprayed agent. These reled parts in standard option are shipped with 2,500 units per 13" or 330cm diameter reel. The reels are dark blue in color and is made of polystyrene plastic (anti-static coated). This and some other options are further described in the Packaging Information table. Antistatic Cover Tape ESD Label These full reels are individually barcode labeled and placed inside a standard intermediate box (illustrated in figure 1.0) made of recyclable corrugated brown paper. One box contains two reels maximum. And these boxes are placed inside a barcode labeled shipping box which comes in different sizes depending on the number of parts shipped. Static Dissipative Embossed Carrier Tape F63TNR Label FD85AB NDM3001 Customized Label SOIC (16lds) Packaging Information L86Z Packaging Option no flow code Packaging type Rail/Tube Qty per Reel/Tube/Bag 45 **SOIC-16 Unit Orientation** Reel Size 13" Dia Box Dimension (mm 343x64x343 530x130x83 Max qty per Box 5,000 13,500 Weight per unit (gm) 0.1437 0.1437 Weight per Reel (kg) 0.7735 Note/Comments 343mm x 342mm x 64mm Standard Intermediate box **ESD Label** F63TNR Label sample F63TNR Label LOT: CBVK741B019 QTY: 2500 D/C1: D9842 D/C2: QTY1: QTY2: SPEC REV: CPN: N/F: F (F63TNR)3 SOIC(16lds) Tape Leader and Trailer Configuration: Figure 2.0 0 \bigcirc 0 0 0 0 \bigcirc 0 0 Components Cover Tape Trailer Tape 640mm minimum or Leader Tape 1680mm minimum or 80 empty pockets 210 empty pockets

©2000 Fairchild Semiconductor International

October 1999, Rev. B

SOIC(16lds) Embossed Carrier Tape Configuration: Figure 3.0

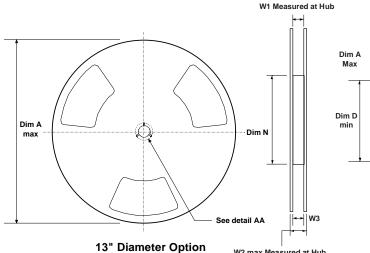
User Direction of Feed

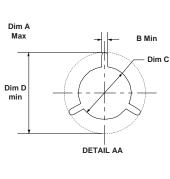

Dimensions are in millimeter														
Pkg type	Α0	В0	w	D0	D1	E1	E2	F	P1	P0	КО	Т	Wc	Тс
SOIC(16lds) (16mm)	6.60 +/-0.30	10.35 +/-0.25	16.0 +/-0.3	1.55 +/-0.05	1.60 +/-0.10	1.75 +/-0.10	14.25 min	7.50 +/-0.05	8.0 +/-0.1	4.0 +/-0.1	2.40 +/-0.40	0.450 +/-0.150	13.0 +/-0.3	0.06 +/-0.02

Notes: A0, B0, and K0 dimensions are determined with respect to the EIA/Jedec RS-481 rotational and lateral movement requirements (see sketches A, B, and C).

Sketch A (Side or Front Sectional View)

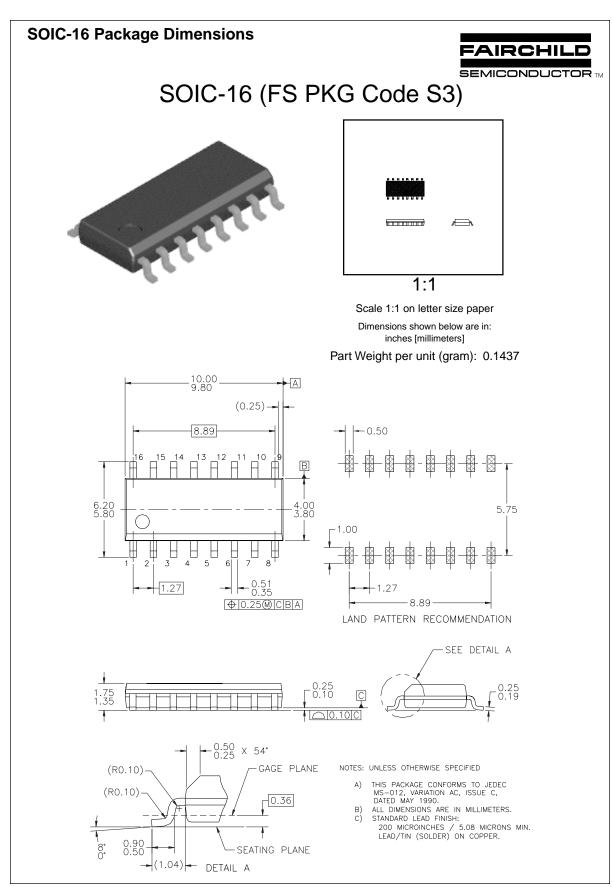
Component Rotation


Sketch B (Top View)
Component Rotation



Sketch C (Top View)

Component lateral movement


SOIC(16lds) Reel Configuration: Figure 4.0

W2 max Measured at Hub

Dimensions are in inches and millimeters									
Tape Size	Reel Option	Dim A	Dim B	Dim C	Dim D	Dim N	Dim W1	Dim W2	Dim W3 (LSL-USL)
16mm	13" Dia	13.00 330	0.059 1.5	512 +0.020/-0.008 13 +0.5/-0.2	0.795 20.2	4.00 100	0.646 +0.078/-0.000 16.4 +2/0	0.882 22.4	0.626 - 0.764 15.9 - 19.4

©2000 Fairchild Semiconductor International

October 1999, Rev. A1

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

 $ACEx^{TM}$ FASTr™ PowerTrench® SyncFET™ QFET™ TinyLogic™ Bottomless™ GlobalOptoisolator™ QSTM UHC™ CoolFET™ GTO™ **VCX**TM $CROSSVOLT^{TM}$ QT Optoelectronics™ HiSeC™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. G