

ROHS TCR22-x Series

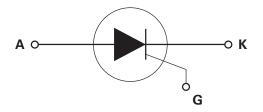
and microprocessors. Features & Benefits

RoHS compliant

Description

- Glass passivated junctions
- Voltage capability up to 600 V
- Surge capability up to 20 A

B 4			- 4		
IVI	ain	I Fe	J:11	Пr	ρc


Symbol	Value	Unit
I _{T(RMS)}	1.5	А
V_{DRM}/V_{RRM}	400 to 600	V
I _{GT}	200	μА

Applications

Typical applications are capacitive discharge systems for strobe lights and gas engine ignition. Also controls for power tools, home/brown goods and white goods appliances.

Excellent unidirectional switches for phase control applications such as heating and motor speed controls. Sensitive gate SCRs are easily triggered with microAmps of current as furnished by sense coils, proximity switches,

Schematic Symbol

Absolute Maximum Ratings — Sensitive SCRs

Symbol	Parameter Test Conditions		Value	Unit	
I _{T(RMS)}	RMS on-state current	T _C = 40°C	1.5	А	
	Dook non renetitiva aurea aureant	single half cycle; $f = 50Hz$; T_J (initial) = 25°C	16	А	
ITSM	Peak non-repetitive surge current	single half cycle; $f = 60Hz$; T_J (initial) = 25°C	20		
l²t	I²t Value for fusing	t _p = 8.3 ms	1.6	A ² s	
di/dt	Critical rate of rise of on-state current	f = 60 Hz ; T _J = 110°C	50	A/µs	
I _{GM}	Peak gate current	T _J = 110°C	1	А	
P _{G(AV)}	Average gate power dissipation	$T_J = 110^{\circ}C$	0.1	W	
T _{stg}	Storage temperature range	-40 to 150	°C		
T	Operating junction temperature range		-40 to 110	°C	

Teccor® brand Thyristors 1.5 Amp Sensitive SCRs

Electrical Characteristics (T_J = 25°C, unless otherwise specified)

Symbol	Test Conditions	Value	Unit			
l _{GT}	V - 6V: P - 100 O		MAX.	200	μΑ	
$V_{\rm GT}$	$V_D = 6V; R_L = 100 \Omega$		MAX.	0.8	V	
dv/dt	V - V · P - 1k0	400V	MIN.	40	\ //	
αν/αι	$V_D = V_{DRM}$; $R_{GK} = 1k\Omega$	600V	IVIIIN.	30	- V/µs	
$V_{\rm GD}$	$V_D = V_{DRM}$; $R_L = 3.3 \text{ k}\Omega$; $T_J = 110^{\circ}\text{C}$		MIN.	0.25	V	
V _{GRM}	$I_{GR} = 10\mu A$		MIN.	6	V	
I _H	$I_{T} = 200 \text{mA}$ (initial)		MAX.	5	mA	
t _q	(1)		MAX.	50	μs	
t _{gt}	$I_{G} = 2 \times I_{GT'}$ PW = 15 μ s; $I_{T} = 3A$		TYP.	3.5	μs	

⁽¹⁾ $I_T = 1A$; $t_p = 50\mu s$; $dv/dt = 5V/\mu s$; $di/dt = -10A/\mu s$

Static Characteristics

Symbol		Value	Unit			
V _{TM}	I _T = 3	BA; t _p = 380 μs		MAX.	1.5	V
		T 25°C	400V		1	
I _{DRM} / I _{RRM}	$V_{DRM} = V_{RRM}$	$T_{_{\mathrm{J}}} = 25^{\circ}\mathrm{C}$	600V	MAX.	2	μΑ
		T _J = 11	0°C		100	

Thermal Resistances

Symbol	Parameter	Value	Unit
$R_{\theta(J-C)}$	Junction to case (AC)	50	°C/W
$R_{\theta(J-A)}$	Junction to ambient	160	°C/W

Figure 1: Normalized DC Gate Trigger Current vs. Junction Temperature

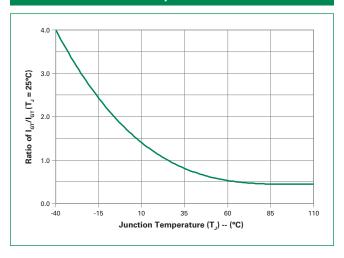


Figure 2: Normalized DC Gate Trigger Voltage vs. Junction Temperature

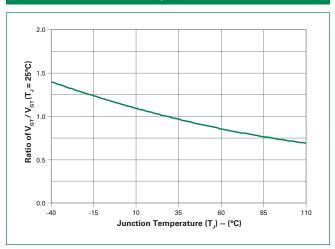


Figure 3: Normalized DC Holding Current vs. Junction Temperature

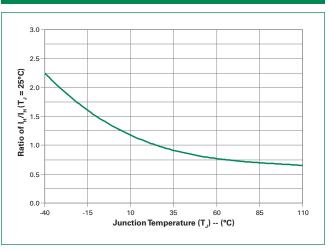


Figure 4: Normalized DC Latching Current vs. Junction Temperature

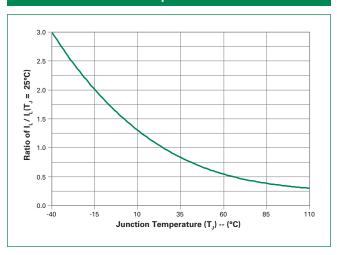


Figure 5: On-State Current vs. On-State Voltage (Typical)

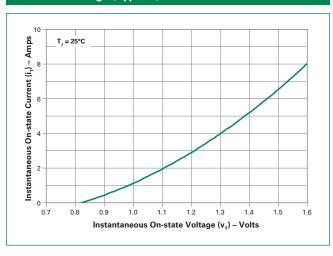
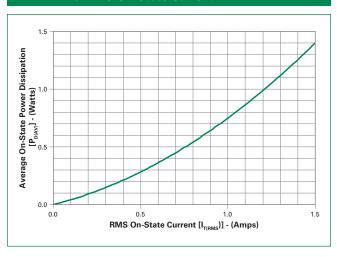



Figure 6: Power Dissipation (Typical) vs. RMS On-State Current

Downloaded from Elcodis.com electronic components distributor

Figure 7: Maximum Allowable Case Temperature vs. RMS On-State Current

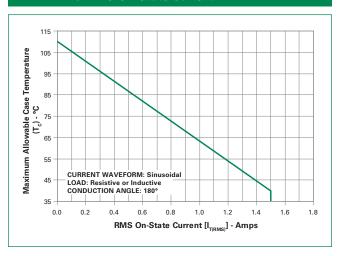


Figure 8: Maximum Allowable Case Temperature vs. Average On-State Current

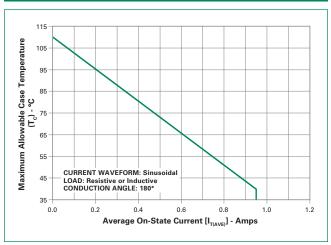


Figure 9: Maximum Allowable Ambient Temperature vs. RMS On-State Current

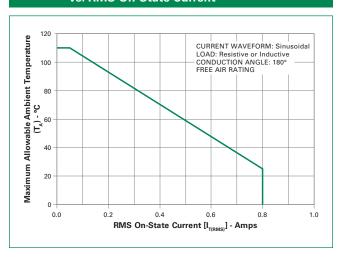


Figure 10: Maximum Allowable Ambient Temperature vs. Average On-State Current

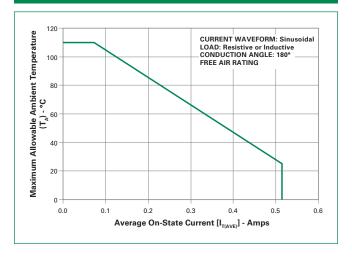


Figure 11: Peak Repetitive Capacitor Discharge Current

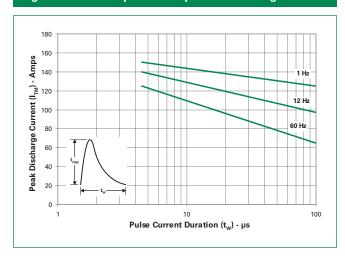
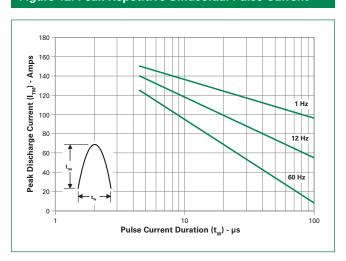
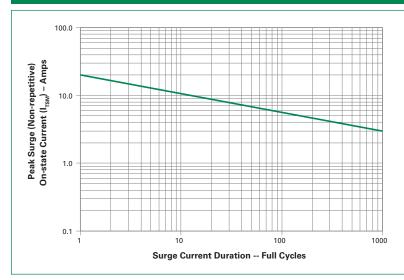
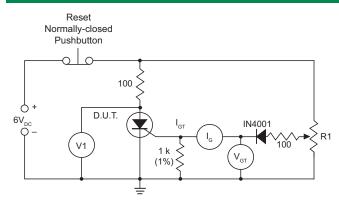




Figure 12: Peak Repetitive Sinusoidal Pulse Current

Figure 13: Surge Peak On-State Current vs. Number of Cycles



SUPPLY FREQUENCY: 60 Hz Sinusoidal LOAD: Resistive RMS On-State Current: [I_{T(RMS)}I: Maximum Rated Value at Specified Case Temperature

Notes

- 1. Gate control may be lost during and immediately following surge current interval.
- Overload may not be repeated until junction temperature has returned to steady-state rated value.

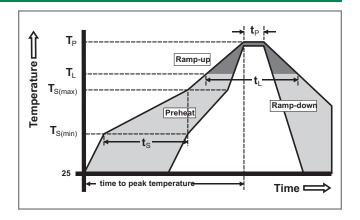
Figure 14: Simple Test Circuit for Gate Trigger Voltage and Current

Note: V1 — 0 V to 10 V dc meter V_{GT} — 0 V to 1 V dc meter I_{G} — 0 mA to 1 mA dc milliammeter R1 — 1 k potentiometer

To measure gate trigger voltage and current, raise gate voltage ($V_{\rm GT}$) until meter reading V1 drops from 6 V to 1 V. Gate trigger voltage is the reading on $V_{\rm GT}$ just prior to V1 dropping. Gate trigger current $I_{\rm GT}$ Can be computed from the relationship

$$I_{GT} = I_{G} - \frac{V_{GT}}{1000} Amps$$

where $\rm I_{\rm g}$ is reading (in amperes) on meter just prior to V1 dropping


Note: I_{GT} may turn out to be a negative quantity (trigger current flows out from gate lead). If negative current occurs, I_{GT} value is not a valid reading. Remove 1 k resistor and use I_{G} as the more correct I_{GT} value. This will occur on 12 μ A gate products.

Teccor® brand Thyristors 1.5 Amp Sensitive SCRs

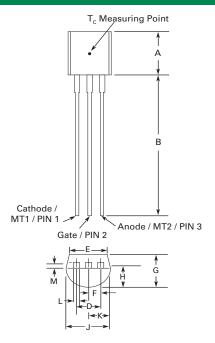
Soldering Parameters

Reflow Co	ndition	Pb – Free assembly
	-Temperature Min (T _{s(min)})	150°C
Pre Heat	-Temperature Max (T _{s(max)})	200°C
	-Time (min to max) (t _s)	60 – 190 secs
Average ra	amp up rate (LiquidusTemp) k	5°C/second max
T _{S(max)} to T _L	- Ramp-up Rate	5°C/second max
Reflow	-Temperature (T _L) (Liquidus)	217°C
nellow	-Temperature (t _L)	60 – 150 seconds
PeakTemp	erature (T _P)	260 ^{+0/-5} °C
Time within 5°C of actual peak Temperature (t _p)		20 - 40 seconds
Ramp-dov	vn Rate	5°C/second max
Time 25°C	to peakTemperature (T _P)	8 minutes Max.
Do not exc	ceed	280°C

Physical Specifications

Terminal Finish	100% Matt Tin-plated/Pb-free Solder Dipped
Body Material	UL recognized epoxy meeting flammability classification 94V-0
Lead Material	Copper Alloy

Design Considerations


Careful selection of the correct device for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the device rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.

Environmental Specifications

Test	Specifications and Conditions		
AC Blocking	MIL-STD-750, M-1040, Cond A Applied Peak AC voltage @ 110°C for 1008 hours		
Temperature Cycling	MIL-STD-750, M-1051, 100 cycles; -40°C to +150°C; 15-min dwell-time		
Temperature/ Humidity	EIA / JEDEC, JESD22-A101 1008 hours; 320V - DC: 85°C; 85% rel humidity		
High Temp Storage	MIL-STD-750, M-1031, 1008 hours; 150°C		
Low-Temp Storage	1008 hours; -40°C		
Thermal Shock	MIL-STD-750, M-1056 10 cycles; 0°C to 100°C; 5-min dwell- time at each temperature; 10 sec (max) transfer time between temperature		
Autoclave	EIA / JEDEC, JESD22-A102 168 hours (121°C at 2 ATMs) and 100% R/H		
Resistance to Solder Heat	MIL-STD-750 Method 2031		
Solderability	ANSI/J-STD-002, category 3, Test A		
Lead Bend	MIL-STD-750, M-2036 Cond E		

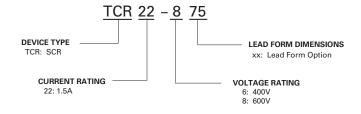
Dimensions – TO-92 (E Package)

Dimension	Inches		Millimeters	
Diffiension	Min	Max	Min	Max
А	0.176	0.196	4.47	4.98
В	0.500		12.70	
D	0.095	0.105	2.41	2.67
Е	0.150		3.81	
F	0.046	0.054	1.16	1.37
G	0.135	0.145	3.43	3.68
Н	0.088	0.096	2.23	2.44
J	0.176	0.186	4.47	4.73
K	0.088	0.096	2.23	2.44
L	0.013	0.019	0.33	0.48
M	0.013	0.017	0.33	0.43

All leads insulated from case. Case is electrically nonconductive.

Product Selector

Part Number		Voltage			Gate Sensitivity	Timo	Package
rait Nullibei	400V	600V	800V	1000V	Gate Sensitivity	Туре	rackaye
TCR22-6	X				200μΑ	Sensitive SCR	TO-92
TCR22-8		X			200μΑ	Sensitive SCR	TO-92

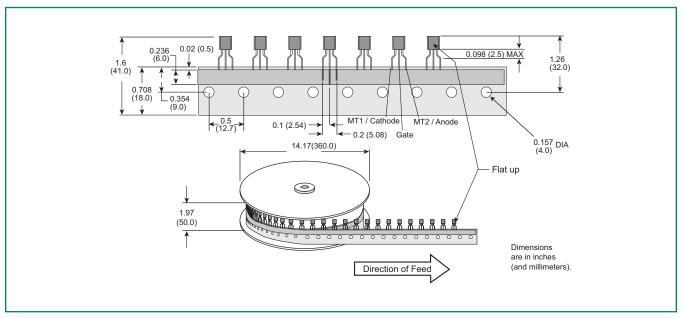

Note: x = Voltage

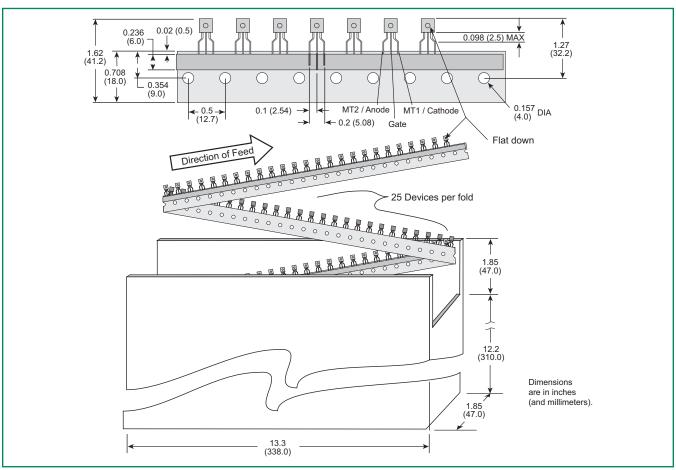
Packing Options

Part Number	Marking	Weight	Packing Mode	Base Quantity
TCR22-x	TCR22-x	0.19 g	Bulk	2000
TCR22-xRP	TCR22-x	0.19 g	Reel Pack	2000
TCR22-xAP	TCR22-x	0.19 g	Ammo Pack	2000

Note: x = Voltage

Part Numbering System


Part Marking System


TO-92 (3-lead) Reel Pack (RP) Radial Leaded Specifications

Meets all EIA-468-B 1994 Standards

TO-92 (3-lead) Ammo Pack (AP) Radial Leaded Specifications

Meets all EIA-468-B 1994 Standards

