Preferred Device

VHF/UHF Transistor

NPN Silicon

Features

• Pb–Free Package is Available

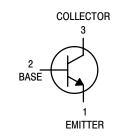
MAXIMUM RATINGS

Rating	Symbol	Max	Unit
Collector-Emitter Voltage	V _{CEO}	25	Vdc
Collector-Base Voltage	V _{CBO}	30	Vdc
Emitter-Base Voltage	V _{EBO}	3.0	Vdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR–5 Board $T_A = 25^{\circ}C$ Derate above 25°C	P _D (Note 1)	225 1.8	mW m₩/°C
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	556	°C/W
Total Device Dissipation Alumina Substrate, T _A = 25°C Derate above 25°C	P _D (Note 2)	300 2.4	mW mW/°C
Thermal Resistance, Junction-to-Ambient	R_{\thetaJA}	625	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.


1. FR-5 = 1.0 X 0.75 X 0.062 in.

2. Alumina = 0.4 X 0.3 X 0.024 in. 99.5% alumina

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

14A = Specific Device Code

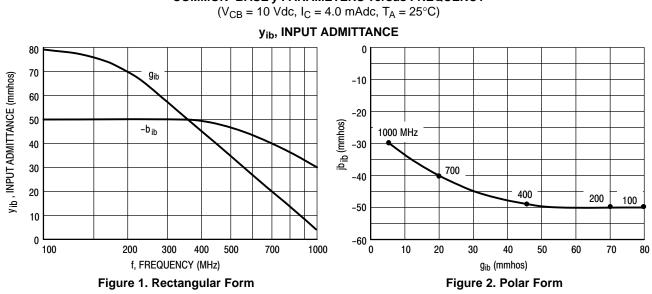
M = Date Code*

=Pb–Free Package

(Note: Microdot may be in either location) *Date Code orientation may vary depending upon manufacturing location

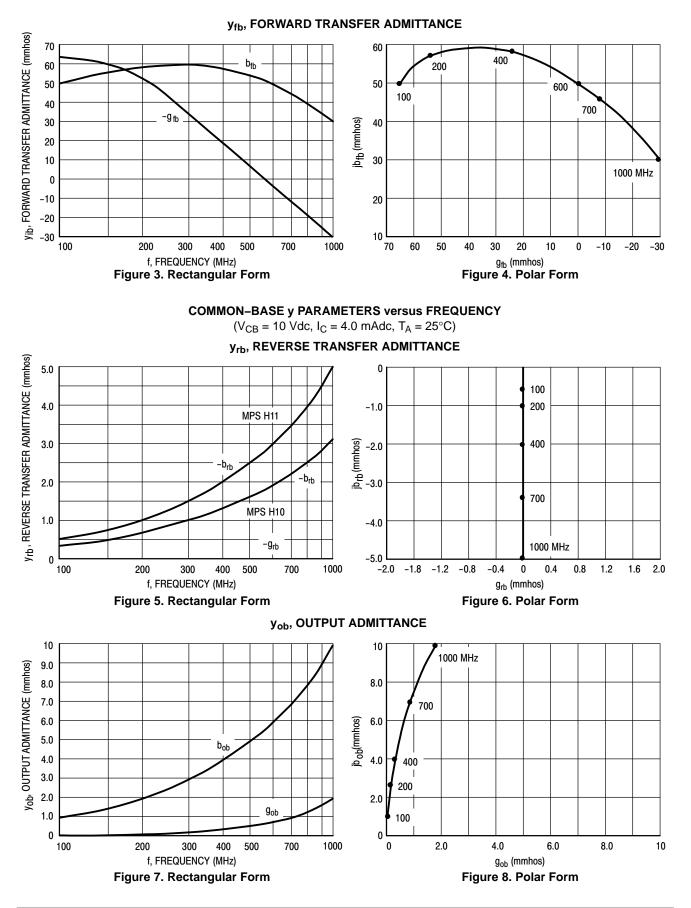
ORDERING INFORMATION

Device	Package	Shipping [†]
MSD2714AT1	SC-59	3000 / Tape & Reel
MSD2714AT1G	SC–59 (Pb–Free)	3000 / Tape & Reel

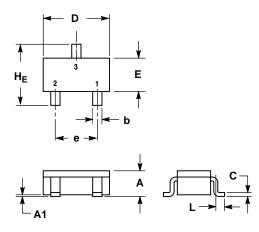

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Preferred devices are recommended choices for future use and best overall value.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)


Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector – Emitter Breakdown Voltage ($I_C = 1.0 \text{ mAdc}, I_B = 0$)	V _(BR) CEO	25	_	_	Vdc
Collector – Base Breakdown Voltage $(I_C = 10 \ \mu Adc, I_E = 0)$	V _(BR) CBO	30	_	-	Vdc
Emitter – Base Breakdown Voltage $(I_E = 10 \ \mu Adc, I_C = 0)$	V _{(BR)EBO}	3.0	_	-	Vdc
Collector Cutoff Current ($V_{CB} = 35 \text{ Vdc}, I_E = 0$)	I _{CBO}	_	_	500	nAdc
Emitter Cutoff Current ($V_{EB} = 3.5 \text{ Vdc}, I_C = 0$)	I _{EBO}	_	_	500	nAdc
ON CHARACTERISTICS					
DC Current Gain ($I_C = 1.0 \text{ mAdc}, V_{CE} = 6.0 \text{ Vdc}$)	h _{FE}	90	_	180	-
Base – Emitter On Voltage (I _C = 4.0 mAdc, V _{CE} = 10 Vdc)	V _{BE}	-	_	0.95	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current–Gain – Bandwidth Product ($I_C = 4.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 100 \text{ MHz}$)	f _T	650	_	-	MHz
Collector–Base Capacitance $(V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz})$	C _{cb}	-	_	0.7	pF
Common-Base Feedback Capacitance $(V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz})$	C _{rb}	-	-	0.65	pF
Collector Base Time Constant ($I_C = 4.0 \text{ mAdc}, V_{CB} = 10 \text{ Vdc}, f = 31.8 \text{ MHz}$)	rb′C _c	-	-	9.0	ps

TYPICAL CHARACTERISTICS

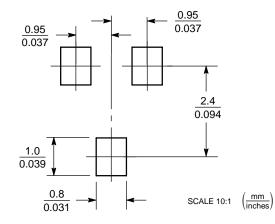

COMMON-BASE y PARAMETERS versus FREQUENCY

TYPICAL CHARACTERISTICS

PACKAGE DIMENSIONS

SC-59 CASE 318D-04 ISSUE G

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER.


. CONTROLLING DIMENSION: MILLIMETE

	м	ILLIMETE	RS INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	1.00	1.15	1.30	0.039	0.045	0.051
A1	0.01	0.06	0.10	0.001	0.002	0.004
b	0.35	0.43	0.50	0.014	0.017	0.020
С	0.09	0.14	0.18	0.003	0.005	0.007
D	2.70	2.90	3.10	0.106	0.114	0.122
E	1.30	1.50	1.70	0.051	0.059	0.067
е	1.70	1.90	2.10	0.067	0.075	0.083
L	0.20	0.40	0.60	0.008	0.016	0.024
HE	2.50	2.80	3.00	0.099	0.110	0.118

2. BASE 3. COLLECTOR

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and use registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agosciated with such unintended or unauthorized use persons, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agosciated with such unintended or unauthorized use persons, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agosciated with such unintended or unauthorized use persons, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal inj

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.