BGR420

NPN Silicon RF Transistor With Bias Circuitry

Small Signal Discretes

Edition 2008-06-06

Published by Infineon Technologies AG, 85579 Neubiberg, Germany
© Infineon Technologies AG 2008.
All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

BGR420, NPN Silicon RF Transistor With Bias Circuitry					
Revision H	listory: 2008-06-06, Rev. 1.0				
Prevision H	listory: no previous version				
Page	Subjects (major changes since last revision)				

Trademarks

SIEGET® is a registered trademark of Infineon Technologies AG.

NPN Silicon RF Transistor With Bias Circuitry*

NPN Silicon RF Transistor With Bias Circuitry* 1

Features

- Noise figure NF = 1.5 dB at 0.4 GHz
- Gain S_{21} = 26 dB at 0.4 GHz
- On chip bias circuitry, 13 mA bias current at $V_{\rm CC}$ = 3.6 V; $V_{\rm BB}$ = 2.8 V
- SIEGET ® 25 GHz f_T -Line
- Pb-free (RoHS compliant) package
- * Short term description

Applications

LNAs

2 **Description**

The BGR420 is a monolithic silicon amplifier with a NPN silicon RF transistor and integrated resistors for biasing.

Туре	Package	Marking
BGR420	SOT343	AWs

Note: ESD (Electrostatic discharge) sensitive device, observe handling precaution!

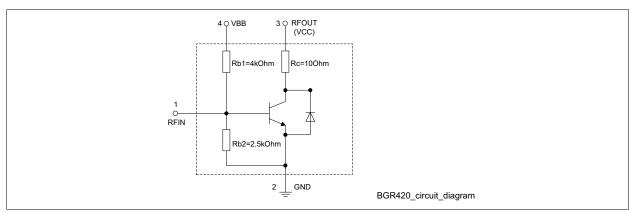


Figure 1 Circuit diagram

Note: Due to design there is an additional diode between emitter and collector, which does not affect normal operation for common emitter configuration.

Description

Table 1 Pinning table

Pin	Function
1	RFIN
2	GND
3	RFOUT (VCC)
4	VBB

2.1 Maximum Ratings

Note: All Voltages refer to GND-node

Table 2 Maximum ratings

Parameter	Symbol	Value	Unit
Current at pin VCC	$I_{\sf CC}$	25	mA
Voltage at pin VCC	$V_{\sf CC}$	13	V
Current at pin VBB	I_{BB}	2.2	mA
Voltage at pin VBB	V_{BB}	8	V
Current at pin RFIN	I_{IN}	3	mA
Voltage at pin RFIN	V_{IN}	5	V
Total power dissipation ¹⁾ $T_{\rm S}$ = 115 °C	P _{tot}	120	mW
Operation junction temperature range	T_{jo}	-65 150	°C
Storage junction temperature range	$T_{ m jstg}$	-65 150	°C

¹⁾ $T_{\rm S}$ is measured on the emitter (GND) lead at the soldering point to the pcb

Note: Stresses above the max. values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions even only for a short moment may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. Absolute maximum ratings typically differ heavily from recommended operation conditions

2.2 Thermal Resistance

Table 3 Thermal Resistance

Parameter	Symbol	Value	Unit
Junction - soldering point ¹⁾	R_{thJS}	≤ 290	K/W

¹⁾ For calculation of $R_{\rm thJA}$ please refer to Application Note Thermal Resistance.

Electrical Characteristics

3 Electrical Characteristics

Table 4 DC characteristics at T_A = 25 °C, unless otherwise specified

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
VCC-GND cutoff current	$I_{\rm CC}$			10	μΑ	$V_{\rm CC}$ = 13 V, $I_{\rm BB}$ = 0, $V_{\rm IN}$ = 0
Current at pin VCC	$I_{\rm CC}$	7	13	20	mA	$V_{\rm BB}$ = 2.8 V, $I_{\rm IN}$ = 0, $V_{\rm CC}$ = 3.6 V

Table 5 AC characteristics (measured in test circuit Figure 2; verified by random sampling) $T_{\rm A}$ = 25 °C, $V_{\rm BB}$ = 2.8 V, $V_{\rm CC}$ = 3.6 V, $Z_{\rm 0}$ = 50 Ω , unless otherwise specified

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Insertion power gain	S ₂₁		26.0		dB	f = 0.4 GHz
			15.5			f = 1.8 GHz
Reverse isolation	S_{12}		-32.5		dB	f = 0.4 GHz
			-23.4			f = 1.8 GHz
Noise figure, $Z_{S} = Z_{Sopt}$	NF		1.5		dB	f = 0.4 GHz
·			1.7			f = 1.8 GHz
Third order intercept point at the	OIP_3		21		dBm	f = 0.4 GHz
output ¹⁾			23			f = 1.8 GHz
1 dB compression point at the output	OP_{-1dB}		5.5		dBm	f = 0.4 GHz
			7.4			f = 1.8 GHz
Return loss input	S ₁₁		-7.3		dB	f = 0.4 GHz
			-11			f = 1.8 GHz
Return loss output	S_{22}		-2.5		dB	f = 0.4 GHz
			-9.5			f = 1.8 GHz

¹⁾ OIP_3 value depends on termination of all intermodulation frequency components. Termination used for this measurement is 50 Ω from 0.1 MHz to 6 GHz.

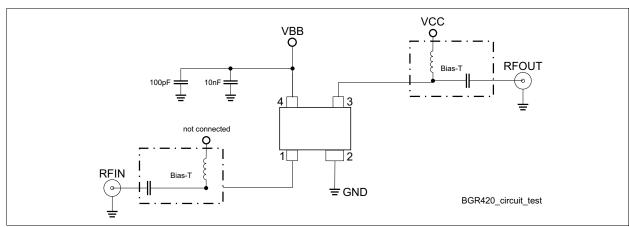


Figure 2 BGR420 test circuit

Package Information

4 Package Information

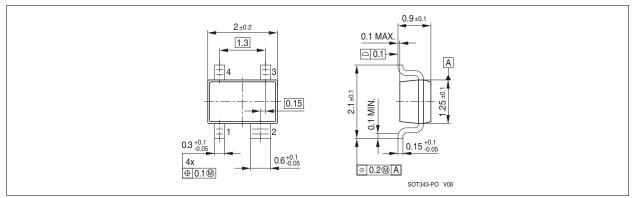


Figure 3 Package Outline SOT343

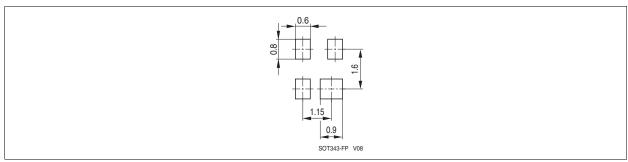


Figure 4 Footprint of SOT343

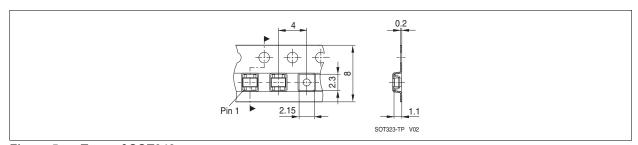


Figure 5 Tape of SOT343