NPN Silicon RF Transistor*

- For low noise, low distortion broadband amplifiers in antenna and telecommunications systems up to 1.5 GHz at collector currents from 10 mA to 70 mA
- Pb-free (RoHS compliant) package ${ }^{1)}$

- Qualified according AEC Q101
* Short term description

ESD (Electrostatic discharge) sensitive device, observe handling precaution!

Type	Marking	Pin Configuration			Package
BFQ19S	FG	$1=\mathrm{B}$	$2=\mathrm{C}$	$3=\mathrm{E}$	SOT89

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	V_{CEO}	15	V
Collector-emitter voltage	V_{CES}	20	
Collector-base voltage	V_{CBO}	20	
Emitter-base voltage	V_{EBO}	3	
Collector current	I_{C}	210	mA
Base current	I_{B}	21	
Total power dissipation 2 2	$P_{\text {tot }}$	1	W
$T_{\mathrm{S}} \leq 85^{\circ} \mathrm{C}$			
Junction temperature	T_{j}	150	${ }^{\circ} \mathrm{C}$
Operation junction temperature range	T_{jo}	$-\ldots-$	-
Ambient temperature	T_{A}	$-65 \ldots 150$	${ }^{\circ} \mathrm{C}$
Storage temperature	$T_{\text {sta }}$	$-65 \ldots 150$	

Thermal Resistance

Parameter	Symbol	Value	Unit
Junction - soldering point ${ }^{3)}$	$R_{\text {thJS }}$	≤ 65	K/W

${ }^{1} \mathrm{~Pb}$-containing package may be available upon special request
${ }^{2} T \mathrm{~S}$ is measured on the collector lead at the soldering point to the pcb
${ }^{3}$ For calculation of $R_{\text {thJA }}$ please refer to Application Note Thermal Resistance

Electrical Characteristics at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

| Parameter | Symbol | Values | | | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- |
| | | min. | typ. | max. | |
| DC Characteristics | $V_{(\mathrm{BR}) \mathrm{CEO}}$ | 15 | - | - | V |
| Collector-emitter breakdown voltage
 $I_{\mathrm{C}}=1 \mathrm{~mA}, I_{\mathrm{B}}=0$ | I_{CES} | - | - | 10 | $\mu \mathrm{~A}$ |
| Collector-emitter cutoff current
 $V_{\mathrm{CE}}=20 \mathrm{~V}, V_{\mathrm{BE}}=0$ | I_{CBO} | - | - | 100 | nA |
| Collector-base cutoff current
 $V_{\mathrm{CB}}=10 \mathrm{~V}, I_{\mathrm{E}}=0$ | I_{EBO} | - | - | 100 | $\mu \mathrm{~A}$ |
| Emitter-base cutoff current
 $V_{\mathrm{EB}}=2 \mathrm{~V}, I_{\mathrm{C}}=0$ | h_{FE} | 70 | 100 | 140 | - |
| DC current gain- | | | | | |
| $I_{\mathrm{C}}=70 \mathrm{~mA}, V_{\mathrm{CE}}=8 \mathrm{~V}$, pulse measured | | | | | |

Electrical Characteristics at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

| Parameter | Symbol | Values | | | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | min. | typ. | max. | |

AC Characteristics (verified by random sampling)

Transition frequency $I_{\mathrm{C}}=70 \mathrm{~mA}, V_{\mathrm{CE}}=8 \mathrm{~V}, f=500 \mathrm{MHz}$	$f_{\text {T }}$	4	5.5	-	GHz
Collector-base capacitance $V_{\mathrm{CB}}=10 \mathrm{~V}, f=1 \mathrm{MHz}, V_{\mathrm{BE}}=0,$ emitter grounded	$C_{c b}$	-	1.05	1.35	pF
Collector emitter capacitance $V_{\mathrm{CE}}=10 \mathrm{~V}, f=1 \mathrm{MHz}, V_{\mathrm{BE}}=0,$ base grounded	$C_{\text {ce }}$	-	0.4	-	
Emitter-base capacitance $V_{\mathrm{EB}}=0.5 \mathrm{~V}, f=1 \mathrm{MHz}, V_{\mathrm{CB}}=0 \text {, }$ collector grounded	$C_{\text {eb }}$	-	3.9	-	
Noise figure $\begin{aligned} & I_{\mathrm{C}}=20 \mathrm{~mA}, V_{\mathrm{CE}}=6 \mathrm{~V}, Z_{\mathrm{S}}=Z_{\mathrm{Sopt}}, \\ & f=900 \mathrm{MHz} \\ & f=1.8 \mathrm{GHz} \end{aligned}$	F	-	$\begin{gathered} 1.8 \\ 3 \end{gathered}$		dB
Power gain, maximum available1) $\begin{aligned} & I_{\mathrm{C}}=70 \mathrm{~mA}, V_{\mathrm{CE}}=8 \mathrm{~V}, Z_{\mathrm{S}}=Z_{\text {Sopt }} Z_{\mathrm{L}}=Z_{\mathrm{Lopt}} \\ & f=900 \mathrm{MHz} \\ & f=1.8 \mathrm{GHz} \end{aligned}$	$G_{\text {ma }}$	-	$\begin{gathered} 11.5 \\ 7 \end{gathered}$		
Transducer gain $\begin{aligned} & I_{\mathrm{C}}=30 \mathrm{~mA}, V_{\mathrm{CE}}=8 \mathrm{~V}, \mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=50 \Omega, \\ & f=900 \mathrm{MHz} \\ & f=1.8 \mathrm{GHz} \end{aligned}$	$\mid S_{21} \mathrm{e}^{2}$	-	$\begin{gathered} 9.5 \\ 4 \end{gathered}$		dB
Third order intercept point at output $\begin{aligned} & V_{\mathrm{CE}}=8 \mathrm{~V}, I_{\mathrm{C}}=70 \mathrm{~mA}, Z_{\mathrm{S}}=Z_{\text {Sopt }}, Z_{\mathrm{L}}=Z_{\text {Lopt }}, \\ & f=1.8 \mathrm{GHz} \end{aligned}$	$I P 3$	-	32	-	dBm

$$
{ }^{1} \mathrm{G}_{\mathrm{ma}}=\left|\mathrm{S}_{21} / \mathrm{S}_{12}\right|\left(\mathrm{k}-\left(\mathrm{k}^{2}-1\right)^{1 / 2}\right)
$$

Total power dissipation $P_{\text {tot }}=f\left(T_{\mathrm{S}}\right)$

Permissible Pulse Load
$P_{\text {totmax }} / P_{\text {totDC }}=f\left(t_{\mathrm{p}}\right)$

Permissible Pulse Load $R_{\text {thJS }}=f\left(t_{\mathrm{p}}\right)$

Package Outline

Foot Print

Marking Layout (Example)

Standard Packing
Reel $\varnothing 180 \mathrm{~mm}=1.000$ Pieces/Reel
Reel ø330 mm $=4.000$ Pieces/Reel

Edition 2009-11-16

Published by Infineon Technologies AG
 81726 Munich, Germany
 © 2009 Infineon Technologies AG
 All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (<www.infineon.com>).

Warnings

Due to technical requirements, components may contain dangerous substances.
For information on the types in question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

