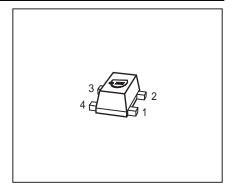


NPN Silicon RF Transistor*

- For low current applications
- Smallest Package 1.4 x 0.8 x 0.59 mm
- Noise figure F = 1.25 dB at 1.8 GHz outstanding G_{ms} = 23 dB at 1.8 GHz
- Transition frequency $f_T = 25 \text{ GHz}$
- Gold metallization for high reliability
- SIEGET ® 25 GHz fT Line
- Pb-free (RoHS compliant) package 1)
- Qualified according AEC Q101
- * Short term description


ESD (Electrostatic discharge) sensitive device, observe handling precaution!

Туре	Marking	Pin Configuration				Package		
BFP405F	ALs	1=B	2=E	3=C	4=E	-	1	TSFP-4

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	V _{CEO}		V
$T_A > 0$ °C		4.5	
$T_A \le 0$ °C		4.1	
Collector-emitter voltage	V _{CES}	15	
Collector-base voltage	V _{CBO}	15	
Emitter-base voltage	V _{EBO}	1.5	
Collector current	$I_{\mathbb{C}}$	12	mA
Base current	I _B	1	
Total power dissipation ²⁾	P _{tot}	55	mW
<i>T</i> _S ≤ 122 °C			
Junction temperature	T_{i}	150	°C
Ambient temperature	T_{A}	-65 150	
Storage temperature	T _{stg}	-65 150	

¹Pb-containing package may be available upon special request

 $^{^2}T_{
m S}$ is measured on the collector lead at the soldering point to the pcb

Thermal Resistance

Parameter	Symbol	Value	Unit
Junction - soldering point ¹⁾	R _{thJS}	≤ 500	K/W

Electrical Characteristics at $T_A = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
DC Characteristics					
Collector-emitter breakdown voltage	V _{(BR)CEO}	4	5	-	V
$I_{\rm C} = 1 \text{ mA}, I_{\rm B} = 0$					
Collector-emitter cutoff current	I _{CES}	-	-	10	μΑ
$V_{CE} = 15 \text{ V}, \ V_{BE} = 0$					
Collector-base cutoff current	I _{CBO}	-	-	100	nA
$V_{\rm CB} = 5 \text{ V}, I_{\rm E} = 0$					
Emitter-base cutoff current	I _{EBO}	-	-	1	μΑ
$V_{\text{EB}} = 0.5 \text{ V}, I_{\text{C}} = 0$					
DC current gain	h _{FE}	60	95	130	-
$I_{\rm C}$ = 5 mA, $V_{\rm CE}$ = 4 V, pulse measured					

 $^{^{1}\}mbox{For calculation}$ of $R_{\mbox{\scriptsize thJA}}$ please refer to Application Note Thermal Resistance

Electrical Characteristics at $T_A = 25$ °C, unless otherwise specified Unit **Parameter** Symbol **Values** min. typ. max. AC Characteristics (verified by random sampling) 18 25 GHz Transition frequency f_{T} $I_{\rm C} = 10 \text{ mA}, V_{\rm CE} = 3 \text{ V}, f = 2 \text{ GHz}$ 0.05 0.1 pF Collector-base capacitance C_{cb} $V_{CB} = 2 \text{ V}, f = 1 \text{ MHz}, V_{BF} = 0$, emitter grounded Collector emitter capacitance C_{ce} 0.2 $V_{CE} = 2 \text{ V}, f = 1 \text{ MHz}, V_{BE} = 0$, base grounded 0.25 Emitter-base capacitance C_{eb} $V_{EB} = 0.5 \text{ V}, f = 1 \text{ MHz}, V_{CB} = 0$ collector grounded F 1.25 dB Noise figure I_{C} = 2 mA, V_{CE} = 2 V, f = 1.8 GHz, Z_{S} = Z_{Sopt} Power gain, maximum stable¹⁾ G_{ms} 22.5 dB $I_{\rm C} = 5$ mA, $V_{\rm CE} = 2$ V, $Z_{\rm S} = Z_{\rm Sopt}$ $Z_L = Z_{Lopt}$, f = 1.8 GHz Insertion power gain $|S_{21}|^2$ 18 $V_{CE} = 2 \text{ V}, I_{C} = 5 \text{ mA}, f = 1.8 \text{ GHz},$ $Z_{\rm S} = Z_{\rm L} = 50 \ \Omega$ Third order intercept point at output²⁾ IP_3 14 dBm $V_{CE} = 2 \text{ V}, I_{C} = 5 \text{ mA}, f = 1.8 \text{ GHz},$ $Z_{\rm S} = Z_{\rm L} = 50 \ \Omega$ 1dB Compression point at output P_{-1dB} 0 $I_{\rm C} = 5 \text{ mA}, V_{\rm CE} = 2 \text{ V}, Z_{\rm S} = Z_{\rm L} = 50 \Omega,$

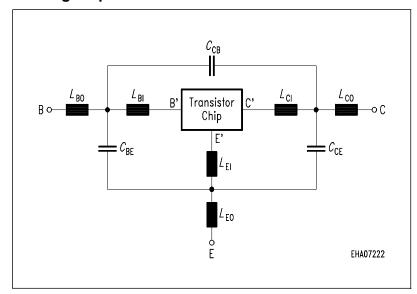
f = 1.8 GHz

 $^{^{1}}G_{ms} = |S_{21} / S_{12}|$

²IP3 value depends on termination of all intermodulation frequency components.

Termination used for this measurement is 50Ω from 0.1 MHz to 6 GHz

SPICE Parameter (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax):


Transistor Chip Data:

0.21024	fA	BF =	83.23	-	NF =	1.0405	-
39.251	V	IKF =	0.16493	Α	ISE =	15.761	fΑ
1.7763	-	BR =	10.526	-	NR =	0.96647	-
34.368	V	IKR =	0.25052	mΑ	ISC =	0.037223	fΑ
1.3152	-	RB =	15	Ω	IRB =	0.21215	mΑ
1.3491	Ω	RE =	1.9289	-	RC =	0.12691	Ω
3.7265	fF	VJE =	0.70367	V	MJE =	0.37747	-
4.5899	ps	XTF =	0.3641	-	VTF =	0.19762	V
1.3364	Α	PTF =	0	deg	CJC =	96.941	fF
0.99532	V	MJC =	0.48652	-	XCJC =	0.08161	-
1.4935	ns	CJS =	0	fF	VJS =	0.75	V
0	-	XTB =	0	-	EG =	1.11	eV
3	-	FC =	0.99469		TNOM	300	K
	39.251 1.7763 34.368 1.3152 1.3491 3.7265 4.5899 1.3364 0.99532 1.4935 0	39.251 V 1.7763 - 34.368 V 1.3152 - 1.3491 Ω 3.7265 fF 4.5899 ps 1.3364 A 0.99532 V 1.4935 ns 0 -	39.251 V $IKF =$ 1.7763 - $BR =$ 34.368 V $IKR =$ 1.3152 - $RB =$ 1.3491 Ω $RE =$ 3.7265 fF VJE = 4.5899 ps $XTF =$ 1.3364 A $PTF =$ 0.99532 V $MJC =$ 1.4935 ns $CJS =$ 0 - $XTB =$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39.251 V $IKF = 0.16493$ A 1.7763 - $BR = 10.526$ - 34.368 V $IKR = 0.25052$ mA 1.3152 - $RB = 15$ Ω 1.3491 Ω $RE = 1.9289$ - 1.37265 fF 1.37265 V 1.3899 PS	39.251 V $IKF = 0.16493$ A $ISE = 1.7763$ - $BR = 10.526$ - $NR = 34.368$ V $IKR = 0.25052$ mA $ISC = 1.3152$ - $RB = 15$ Ω $IRB = 1.3491$ Ω $RE = 1.9289$ - $RC = 3.7265$ fF $VJE = 0.70367$ V $MJE = 4.5899$ ps $XTF = 0.3641$ - $VTF = 1.3364$ A $PTF = 0$ deg $CJC = 0.99532$ V $MJC = 0.48652$ - $XCJC = 1.4935$ ns $CJS = 0$ fF $VJS = 0$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

C'-E'-dioden Data (Berkley-Spice 1G.6 Syntax): IS = 2 fA; N = 1.02 -, $RS = 20 \Omega$

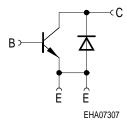
All parameters are ready to use, no scalling is necessary.

Package Equivalent Circuit:

The TSFP-4 package has two emitter leads. To avoid high complexity fo the package equivalent circuit, both leads are combined in one electrical connection.

RLXI are series resistors for the inductances LXI and $K_{\mbox{\scriptsize Xa-by}}$ are the coupling coefficients between the inductances \mathbf{L}_{ax} and $\mathbf{L}_{yb}.$ The referencepin for the couple ports are B, E, C, B', E', C For examples and ready to use parameters please contact your local Infineon Technologies distributor or sales office to obtain a InfineonTechnologies CD-ROM or see Internet: http//www.infineon.com/silicondiscretes

L _{BO} =	0.22	nΗ				
L _{EO} =	0.28	nΗ				
L _{CO} =	0.22	nΗ				
L _{BI} =	0.42	nΗ				
L _{EI} =	0.26	nΗ				
<i>L</i> _{CI} =	0.35	nΗ				
$C_{BE} =$	34	fF				
$C_{BC} =$	2	fF				
$C_{CE} =$	33	fF				
K _{BO-EO} =	0.1	-				
K _{BO-CO} =	0.01	-				
K _{EO-CO} =	0.11	-				
K _{CI-EI} =	-0.05	-				
K _{BI-CI} =	-0.08	-				
K _{BI-EI} =	0.2	-				
$R_{LBI} =$	0.15	Ω				
$R_{LEI} =$	0.11	Ω				
R _{LCI} =	0.13	Ω				
Valid up to 6GHz						



For non-linear simulation:

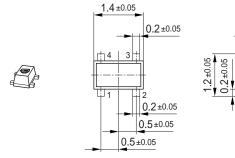
- · Use transistor chip parameters in Berkeley SPICE 2G.6 syntax for all simulators.
- If you need simulation of the reverse characteristics, add the diode with the C'-E'- diode data between collector and emitter.
- Simulation of package is not necessary for frequencies < 100MHz.
 For higher frequencies add the wiring of package equivalent circuit around the non-linear transistor and diode model.

Note:

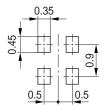
 This transistor is constructed in a common emitter configuration. This feature causes an additional reverse biased diode between emitter and collector, which does not effect normal operation.

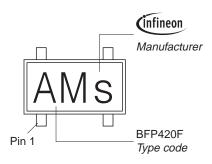
Transistor Schematic Diagram

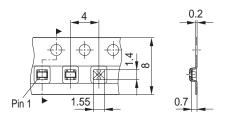
The common emitter configuration shows the following advantages:


- · Higher gain because of lower emitter inductance.
- Power is dissipated via the grounded emitter leads, because the chip is mounted on copper emitter leadframe.

Please note, that the broadest lead is the emitter lead.


 0.55 ± 0.04


Package Outline



Marking Layout (Example)

Standard Packing

Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel

Edition 2006-02-01 Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2007. All Rights Reserved.

Attention please!

The information given in this dokument shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system.

Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.