JFET - VHF/UHF Amplifier Transistor

N-Channel

Features

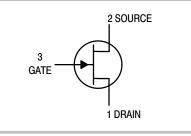
• These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	25	Vdc
Gate-Source Voltage	V _{GS}	25	Vdc
Gate Current	l _G	10	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR-5 Board, (Note 1) T _A = 25°C Derate above 25°C	P _D	225 1.8	mW mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	556	°C/W
Junction and Storage Temperature	T _J , T _{stg}	–55 to +150	°C


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. $FR-5 = 1.0 \times 0.75 \times 0.062$ in.

ON Semiconductor®

http://onsemi.com

SOT-23 (TO-236) CASE 318 STYLE 10

MARKING DIAGRAM

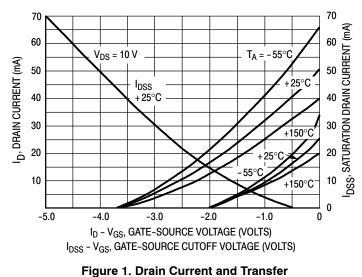
6x = Device Code x = U for MMBFJ309LT1

- x = T for MMBFJ310LT1
- = Date Code*

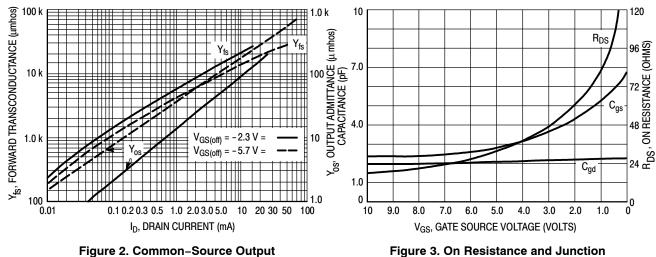
Μ

= Pb-Free Package

(Note: Microdot may be in either location) *Date Code orientation and/or overbar may vary depending upon manufacturing location.

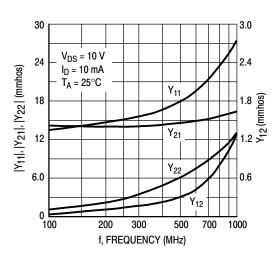

ORDERING INFORMATION

Device	Package	Shipping [†]
MMBFJ309LT1G	SOT-23 (Pb-Free)	3,000 / Tape & Reel
MMBFJ310LT1G	SOT-23 (Pb-Free)	3,000 / Tape & Reel

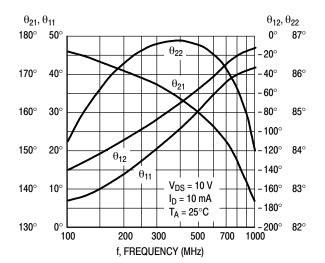

+ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

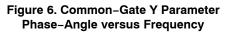
ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Мах	Unit	
OFF CHARACTERISTICS						
Gate-Source Breakdown Voltage $(I_G = -1.0 \ \mu Adc, \ V_{DS} = 0)$		V _{(BR)GSS}	-25	_	-	Vdc
Gate Reverse Current (V _{GS} = -15 Vdc) (V _{GS} = -15 Vdc, T _A = 125°C)		I _{GSS}			-1.0 -1.0	nAdc μAdc
Gate Source Cutoff Voltage (V _{DS} = 10 Vdc, I _D = 1.0 nAdc)	MMBFJ309 MMBFJ310	V _{GS(off)}	-1.0 -2.0		-4.0 -6.5	Vdc
ON CHARACTERISTICS						
Zero-Gate-Voltage Drain Current $(V_{DS} = 10 \text{ Vdc}, V_{GS} = 0)$	MMBFJ309 MMBFJ310	I _{DSS}	12 24		30 60	mAdc
Gate-Source Forward Voltage (I _G = 1.0 mAdc, V _{DS} = 0)		V _{GS(f)}	_	_	1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS				•		
Forward Transfer Admittance (V _{DS} = 10 Vdc, I _D = 10 mAdc, f = 1.0 kHz)		Y _{fs}	8.0	_	18	mmhos
Output Admittance (V _{DS} = 10 Vdc, I _D = 10 mAdc, f = 1.0 kHz)		y _{os}	_	_	250	μmhos
Input Capacitance (V _{GS} = -10 Vdc, V _{DS} = 0 Vdc, f = 1.0 MHz)		C _{iss}	_	_	5.0	pF
Reverse Transfer Capacitance (V _{GS} = -10 Vdc, V _{DS} = 0 Vdc, f = 1.0 MHz)		C _{rss}	_	_	2.5	pF
Equivalent Short–Circuit Input Noise Voltage (V _{DS} = 10 Vdc, I _D = 10 mAdc, f = 100 Hz)		ēn	_	10	-	nV/\sqrt{Hz}

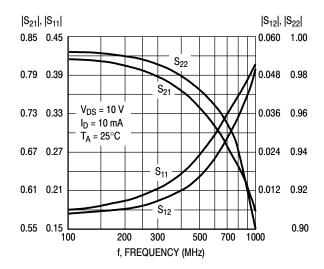
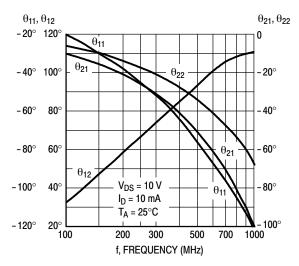


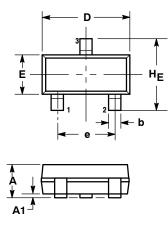
Characteristics versus Gate-Source Voltage

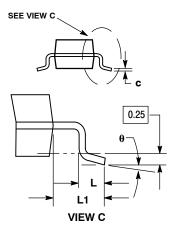



Admittance and Forward Transconductance versus Drain Current

Capacitance versus Gate-Source Voltage

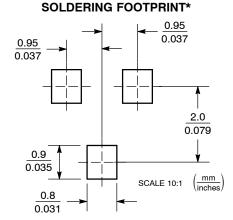

Figure 5. Common–Gate S Parameter Magnitude versus Frequency



PACKAGE DIMENSIONS

SOT-23 (TO-236) CASE 318-08 ISSUE AN

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.


 CONTROLLING DIMENSION: INCH.
MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD

THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

 ^{318–01} THRU -07 AND -09 OBSOLETE, NEW STANDARD 318–08.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.89	1.00	1.11	0.035	0.040	0.044
A1	0.01	0.06	0.10	0.001	0.002	0.004
b	0.37	0.44	0.50	0.015	0.018	0.020
с	0.09	0.13	0.18	0.003	0.005	0.007
D	2.80	2.90	3.04	0.110	0.114	0.120
E	1.20	1.30	1.40	0.047	0.051	0.055
е	1.78	1.90	2.04	0.070	0.075	0.081
L	0.10	0.20	0.30	0.004	0.008	0.012
L1	0.35	0.54	0.69	0.014	0.021	0.029
HE	2.10	2.40	2.64	0.083	33 0.094 0.10	

STYLE 10: PIN 1. DRAIN 2. SOURCE 3. GATE

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and IIII are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product cult create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use personal and such performance of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5773–3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative