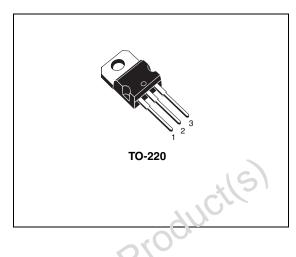


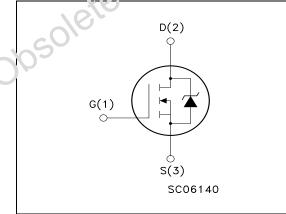
IRF740

General features

Туре	V _{DSS} (@Tjmax)	R _{DS(on)}	ID
IRF740	400V	<0.55Ω	10A


- Exceptional dv/dt capability
- 100% avalanche tested
- Low gate charge
- Very low intrinsic capacitances

Description


The PowerMESH[™]II is the evolution of the first generation of MESH OVERLAY[™]. The layout refinements introduced greatly improve the Ron*area figure of merit while keeping the device at the leading edge for what concerns swithing speed, gate charge and ruggedness.

Applications

Switching application

Internal schematic diagram

Order codes

Part number	Marking	Package	Packaging
IRF740	IRF740@	TO-220	Tube

August 0000	Day 4	1/10
August 2006	Rev 4	1/12

Contents

1	Electrical ratings
2	Electrical characteristics
	2.1 Electrical characteristics (curves)
3	Test circuit
4	Package mechanical data9
5	Revision history
obsole	Revision history

Electrical ratings 1

Table 1.	Absolute	maximum	ratings
----------	----------	---------	---------

	in sectore maximum ratinge		
Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage (V _{GS} = 0)	400	V
V _{DGR}	Drain-gate voltage (R_{GS} = 20 k Ω)	400	V
V _{GS}	Gate- source voltage	± 20	V
۱ _D	Drain current (continuous) at $T_C = 25^{\circ}C$	10	А
I _D	Drain current (continuous) at T _C = 100°C	6.3	А
I _{DM} ⁽¹⁾	Drain current (pulsed)	40	А
P _{tot}	Total dissipation at $T_{C} = 25^{\circ}C$	125	W
	Derating Factor	1.0	W/°C
dv/dt ⁽²⁾	Peak diode recovery voltage slope	4.0	V/ns
T _{stg}	Storage temperature	05 45 4 50	o°
Тj	Max. operating junction temperature	-65 to 150	÷C
Pulse width li	mited by safe operating area.	210	
l _{SD} ⊴0A, di/dt	: \$300A/μs, V _{DD} ≤V _{(BR)DSS} , Tj ≤T _{JMAX}	X	
able 2. T	hermal data	3	
Rthj-case	Thermal resistance junction-case max	1	°C/W

Table 2. Thermal data

Rthj-case	Thermal resistance junction-case max	1	°C/W
Rthj-amb	Thermal resistance junction-ambient max	62.5	°C/W
TJ	Maximum lead temperature for soldering purpose	300	°C

Table 3. Avalanche characteristics

	Symbol	Parameter	Value	Unit
	I _{AR}	Avalanche current, repetitive or not-repetitive (pulse width limited by Tj Max)	10	А
18	E _{AS}	Single pulse avalanche energy (starting Tj=25°C, Id=Iar, Vdd=50V)	520	mJ
06501				

57

Electrical characteristics 2

(T_{CASE}=25°C unless otherwise specified)

	On/on states					
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 250 μA, V _{GS} = 0	400			V
I _{DSS}	Zero gate voltage drain current ($V_{GS} = 0$)	V _{DS} = Max rating, V _{DS} = Max rating @125°C			1 50	μΑ μΑ
I _{GSS}	Gate body leakage current (V _{DS} = 0)	$V_{GS} = \pm 20V$			± 100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on resistance	V _{GS} = 10V, I _D = 5.3A		0.46	0.55	Ω
Table 5.	Dynamic			20		
14010 01	2,112.110					

Table 4. **On/off states**

Table 5. Dynamic

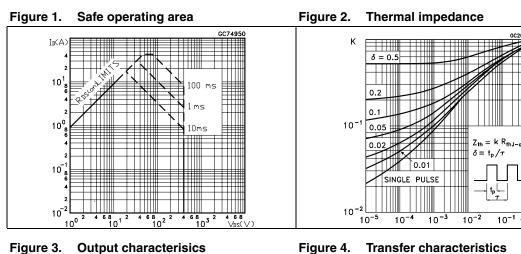
	Bynamio					
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
g _{fs} ⁽¹⁾	Forward transconductance	$V_{DS} > I_{D(on)} \times R_{DS(on)max},$ $I_D = 6A$		7		S
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	V _{DS} =25V, f=1 MHz, V _{GS} =0		1400 220 27		pF pF pF
t _{d(on)} t _r	Turn-on delay time	$\begin{split} V_{DD} &= 200V, \ I_D = 5A, \\ R_G &= 4.7\Omega, \ V_{GS} = 10V \\ (see \ Figure \ 12) \end{split}$		17 10		ns ns
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	V _{DD} =320V, I _D = 10.7A V _{GS} =10V		35 11 12	43	nC nC nC

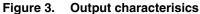
1. Pulsed: pulse duration=300µs, duty cycle 1.5% 2050le

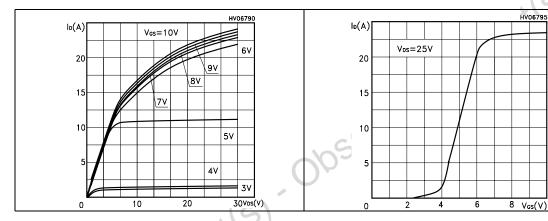
4/12

Symbol	Parameter	Test conditions	Min	Тур.	Max	Unit
I _{SD}	Source-drain current				10	А
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)				40	А
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} =10A, V _{GS} =0			1.6	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I _{SD} =10A, di/dt = 100A/μs, V _{DD} =100V, Tj=150°C (see Figure 12)		370 3.2 17		ns μC Α

 Table 6.
 Source drain diode

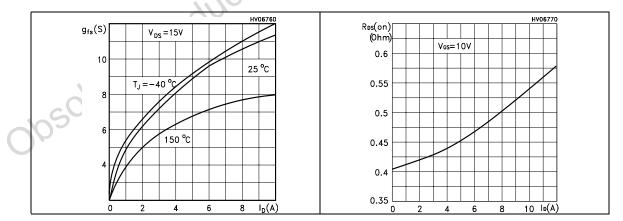

1. Pulse width limited by safe operating area

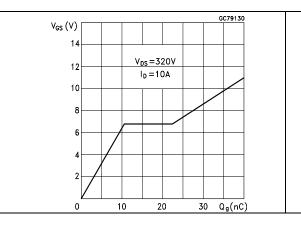

2. Pulset: pulse duration=300µs, duty cycle 1.5%



 $10^{-1} t_{p}(s)$

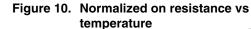
Electrical characteristics (curves) 2.1





HV06780

Ciss


Coss

40 Vos(V)

IRF740

Figure 7. Gate charge vs gate-source voltage Figure 8. Capacitance variations

10

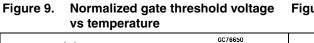
20

f=1MHz Vgs=0V

Crss

30

C(pF)


2000

1500

1000

500

0

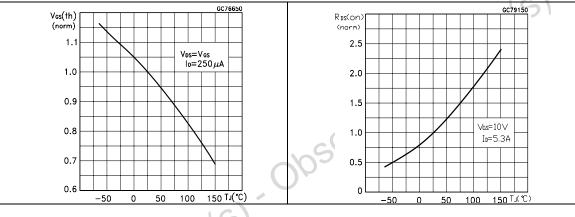
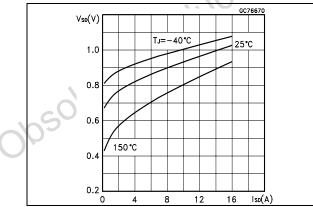
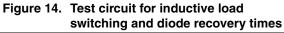



Figure 11. Source-drain diode forward characteristics


57

3 Test circuit

 $V_{D} \rightarrow V_{D} \rightarrow V_{D} \rightarrow V_{D} \rightarrow V_{D} \rightarrow V_{CS}$ $R_{G} \rightarrow D.U.T.$ $P_{V} \rightarrow Scosseo$

Figure 12. Switching times test circuit for

resistive load

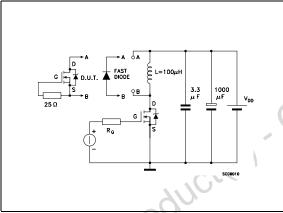


Figure 16. Unclamped inductive waveform

Figure 13. Gate charge test circuit

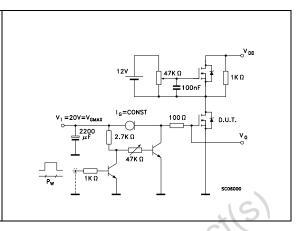


Figure 15. Unclamped Inductive load test circuit

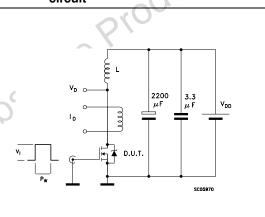
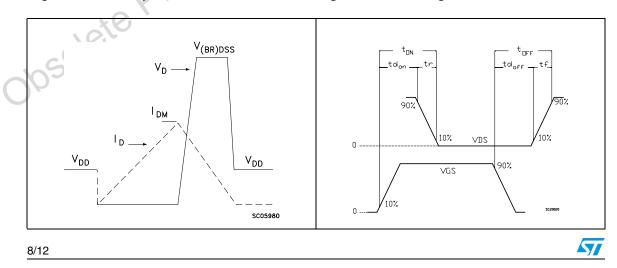
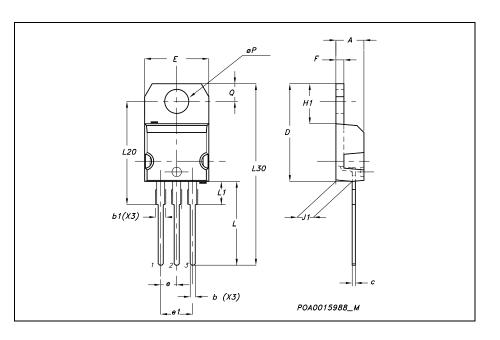



Figure 17. Switching time waveform

4 Package mechanical data


In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

obsolete Product(s). Obsolete Product(s)

DIM.	mm.			inch			
DIIVI.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.	
А	4.40		4.60	0.173		0.181	
b	0.61		0.88	0.024		0.034	
b1	1.15		1.70	0.045		0.066	
С	0.49		0.70	0.019		0.027	
D	15.25		15.75	0.60		0.620	
E	10		10.40	0.393		0.409	
е	2.40		2.70	0.094		0.106	
e1	4.95		5.15	0.194		0.202	
F	1.23		1.32	0.048		0.052	
H1	6.20		6.60	0.244		0.256	
J1	2.40		2.72	0.094		0.107	
L	13		14	0.511		0.551	
L1	3.50		3.93	0.137		0.154	
L20		16.40			0.645		
L30		28.90			1.137		
øР	3.75		3.85	0.147		0.151	
Q	2.65		2.95	0.104		0.116	

10/12

57

5 Revision history

Table 7. Revision history

Date	Revision	Changes
09-Sep-2004	3	Complete version, new datasheet according to PCN DSG/CT/2C14. special marking: IRF740 @
03-Aug-2006	4	New template, no content change

obsolete Product(s). Obsolete Product(s)

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

12/12

