

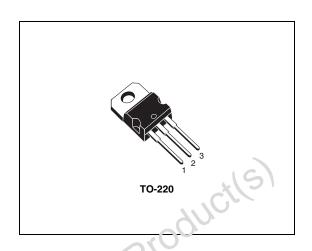
IRF730

N-channel 400V - 0.75Ω - 5.5A TO-220 Powermesh™II Power MOSFET

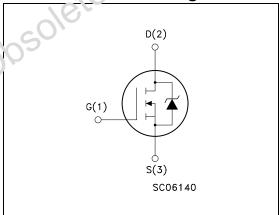
General features

Туре	V _{DSS}	R _{DS(on)}	I _D
IRF730	400V	<1Ω	5.5A

- Exceptional dv/dt capability
- 100% avalanche tested
- Low gate charge


Description

The PowerMESH™II is the evolution of the first generation of MESH OVERLAY™. The layout refinements introduced greatly improve the Ron*area figure of merit while keeping the device at the leading edge for what concerns swithing speed, gate charge and ruggedness.


Productis

Applications

Switching application

Internal schematic diagram

Order codes

Part number	Marking	Package	Packaging
IRF730	IRF730	TO-220	Tube

June 2006 Rev 4 1/12

Contents IRF730

Contents

1	Electrical ratings 3
2	Electrical characteristics
3	Test circuit 8
4	Package mechanical data 9
5	Revision history
	B Lognicir
	Obsoleite
	Auci(s)
	Revision history
Ops	

IRF730 Electrical ratings

1 Electrical ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage (V _{GS} = 0)	400	V
V _{DGR}	Drain-gate voltage (R _{GS} = 20 kΩ)	400	V
V _{GS}	Gate- source voltage	± 20	V
I _D	Drain current (continuos) at T _C = 25°C	5.5	Α
I _D	Drain current (continuos) at T _C = 100°C	3.5	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	22	Α
P _{TOT}	Total dissipation at T _C = 25°C	100	W
	Derating factor	0.8	W/°C
dv/dt (2)	Peak diode recovery voltage slope	3	V/ns
T _{stg}	Storage temperature	-65 to 150	°C
T _j	Max. operating junction temperature	150	°C

^{1.} Pulse width limited by safe operating area

Table 2. Thermal data

Rthj-case	Thermal resistance junction-case max	1.25	°C/W
Rthj-amb	Thermal resistance junction-ambient max	62.5	°C/W
Rthc-sink	Thermal resistance case-sink typ	0.5	°C/W
T _I	Maximum lead temperature for soldering purpose	300	°C

Table 3. Avalanche characteristics

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche current, repetitive or not-repetitive (pulse width limited by T_j max)	5.5	Α
E _{AS}	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	300	mJ

3/12

 $^{2. \}quad I_{SD} \leq \hspace{-0.05cm} 5.5 A, \, di/dt \leq \hspace{-0.05cm} 90 A/\mu s, \, V_{DD} \leq \hspace{-0.05cm} V_{(BR)DSS,} \, Tj \leq \hspace{-0.05cm} T_{jmax}.$

Electrical characteristics IRF730

Electrical characteristics 2

(T_{CASE}=25°C unless otherwise specified)

Table 4. On/off

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_D = 250 \mu A, V_{GS} = 0$	400			٧
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V_{DS} = max rating V_{DS} = max rating, T_{C} = 125 °C			1 50	μ Α μ Α
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ±20V			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on resistance	V _{GS} = 10V, I _D = 3 A		0.75	7	Ω
				90		
Table 5.	Dynamic		71			
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit

Table 5. **Dynamic**

	Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
	g _{fs} ⁽¹⁾	Forward transconductance	$V_{DS} > I_{D(on)} \times R_{DS(on)max},$ $I_{D} = 3 \text{ A}$	2.9			S
	C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	$V_{DS} = 25V, f = 1 \text{ MHz}, V_{GS} = 0$		530 90 15		pF pF pF
	$t_{d(on)} \ t_{r} \ t_{d(off)} \ t_{f}$	Turn-on delay time Rise time Off-voltage rise time Fall time	$V_{DD} = 200V, I_{D} = 3A$ $R_{G} = 4.7\Omega V_{GS} = 10V$		11 15		ns ns ns
	$egin{array}{c} Q_{ m g} \ Q_{ m gd} \end{array}$	Total gate charge Gate-source charge Gate-drain charge	$V_{DD} = 320V, I_{D} = 5.5A,$ $V_{GS} = 10V$		18 4 8.5	24	nC nC nC
Obsole	1. Pulsed: P	ulse duration = 300 μs, duty cy	cle 1.5 %.				

Table 6. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current Source-drain current (pulsed)				6 24	A A
V _{SD} ⁽²⁾	Forward on voltage	$I_{SD} = 5.5A, V_{GS} = 0$			1.6	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	$I_{SD} = 7A$, di/dt = 100A/ μ s, $V_{DD} = 100V$, $T_j = 150$ °C		280 1.4 10		ns μC A

- 1. Pulse width limited by safe operating area.
- 2. Pulsed: Pulse duration = 300 μ s, duty cycle 1.5 %

Obsolete Product(s). Obsolete Product(s)

Electrical characteristics IRF730

2.1 Electrical characteristics (curves)

Figure 1. Safe operating area

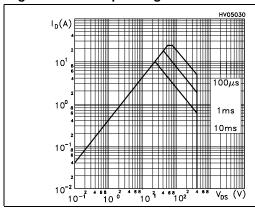


Figure 2. Thermal impedance

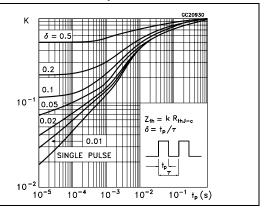
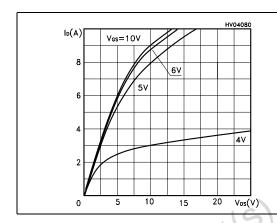



Figure 3. Output characterisics

Figure 4. Transfer characteristics

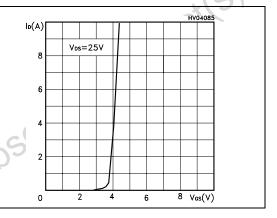
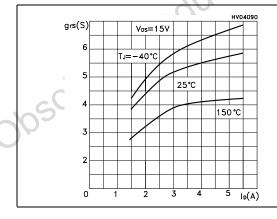
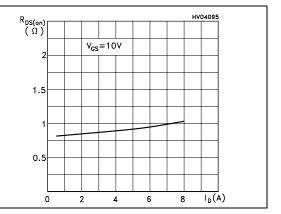




Figure 5. Transconductance

Figure 6. Static drain-source on resistance

IRF730 Electrical characteristics

Figure 7. Gate charge vs gate-source voltage Figure 8. Capacitance variations

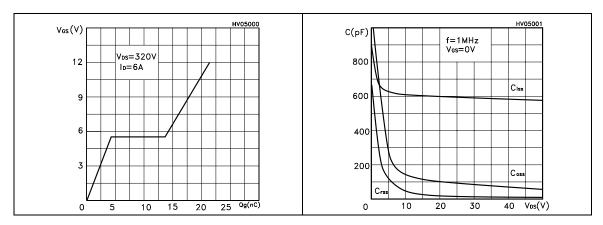


Figure 9. Normalized gate threshold voltage vs temperature

Figure 10. Normalized on resistance vs temperature

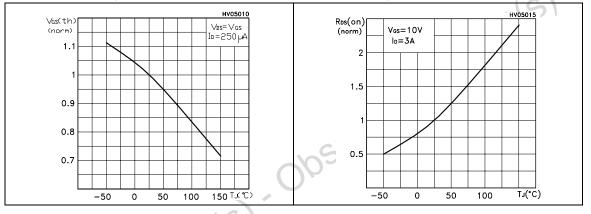
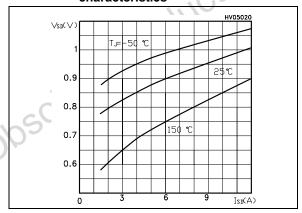



Figure 11. Source-drain diode forward characteristics

Test circuit IRF730

3 Test circuit

Figure 12. Unclamped Inductive load test circuit

Figure 13. Unclamped inductive waveform

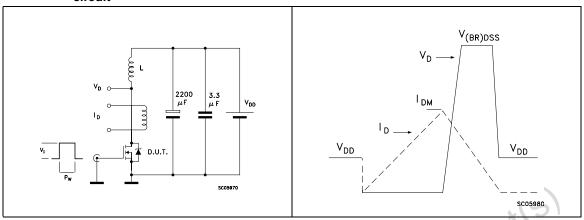


Figure 14. Switching times test circuit for resistive load

Figure 15. Gate charge test circuit

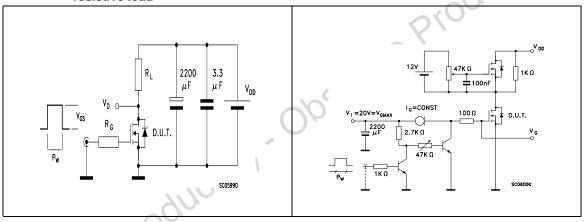
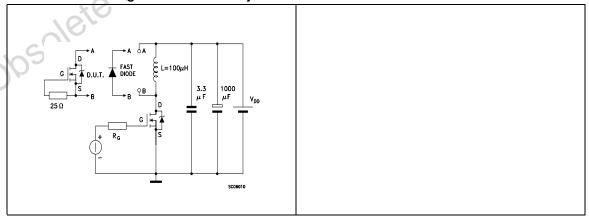
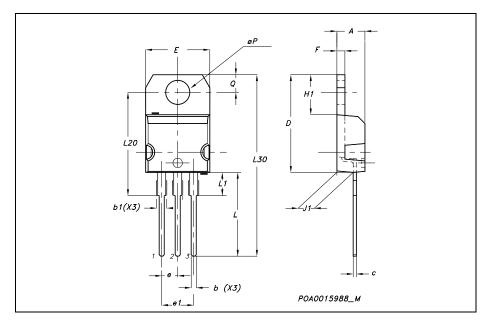



Figure 16. Test circuit for inductive load switching and diode recovery times


4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

Obsolete Product(s). Obsolete Product(s)

TO-220 MECHANICAL DATA

DIM.		mm.	inch			
DIW.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α	4.40		4.60	0.173		0.181
b	0.61		0.88	0.024		0.034
b1	1.15		1.70	0.045		0.066
С	0.49		0.70	0.019		0.027
D	15.25		15.75	0.60		0.620
E	10		10.40	0.393		0.409
е	2.40		2.70	0.094		0.106
e1	4.95		5.15	0.194		0.202
F	1.23		1.32	0.048		0.052
H1	6.20		6.60	0.244		0.256
J1	2.40		2.72	0.094		0.107
L	13		14	0.511		0.551
L1	3.50		3.93	0.137		0.154
L20		16.40			0.645	
L30		28.90			1.137	
øΡ	3.75		3.85	0.147		0.151
Q	2.65		2.95	0.104		0.116

IRF730 Revision history

5 Revision history

Table 7. Revision history

Date	Revision	Changes
21-Jun-2004	3	Preliminary version
29-Jun-2006	4	New template, no content change

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

477