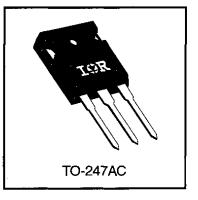

International IGR Rectifier

PD-9.995

HEXFET[®] Power MOSFET

- Dynamic dv/dt Rating
- Repetitive Avalanche Rated
- Isolated Central Mounting Hole
- Fast Switching
- Ease of Paralleling
- Simple Drive Requirements



$$V_{DSS} = 450V$$

 $R_{DS(on)} = 0.35\Omega$
 $I_D = 14A$

Description

Third Generation HEXFETs from International Rectifier provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness.

The TO-247 package is preferred for commercial-industrial applications where higher power levels preclude the use of TO-220 devices. The TO-247 is similar but superior to the earlier TO-218 package because of its isolated mounting hole. It also provides greater creepage distance between pins to meet the requirements of most safety specifications.

Absolute Maximum Ratings

	Parameter	Max.	Units	
$I_D @ T_C = 25^{\circ}C$	Continuous Drain Current, VGS @ 10 V	14		
$I_D @ T_C = 100^{\circ}C$	Continuous Drain Current, V _{GS} @ 10 V	9.1	A	
Прм	Pulsed Drain Current ①	56		
P _D @ T _C = 25°C	Power Dissipation	190	W	
	Linear Derating Factor	1.5	W/°C	
V _{GS}	Gate-to-Source Voltage	±20	V	
E _{AS}	Single Pulse Avalanche Energy 2	740	mJ	
IAR	Avalanche Current ①	14	A	
E _{AR}	Repetitive Avalanche Energy ①	19	mJ	
dv/dt	Peak Diode Recovery dv/dt ③	3.5	V/ns	
TJ	Operating Junction and	-55 to +150		
T _{STG}	Storage Temperature Range		°C	
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)		
	Mounting Torque, 6-32 or M3 screw	10 lbf•in (1.1 N•m)		

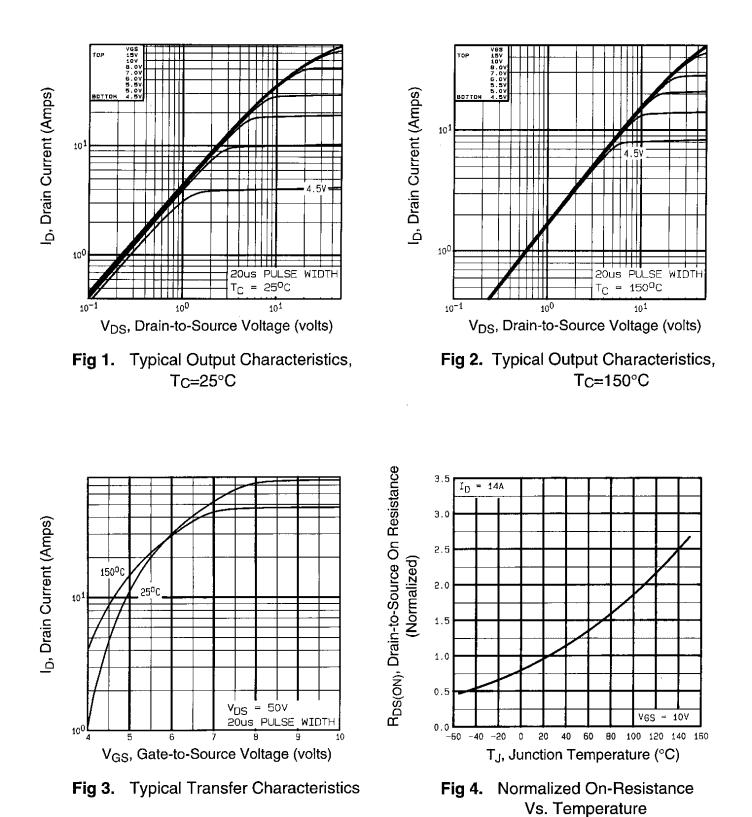
Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units
Rejc	Junction-to-Case			0.65	
R _{0CS}	Case-to-Sink, Flat, Greased Surface		0.24	_	°C/W
R _{BJA}	Junction-to-Ambient			40	

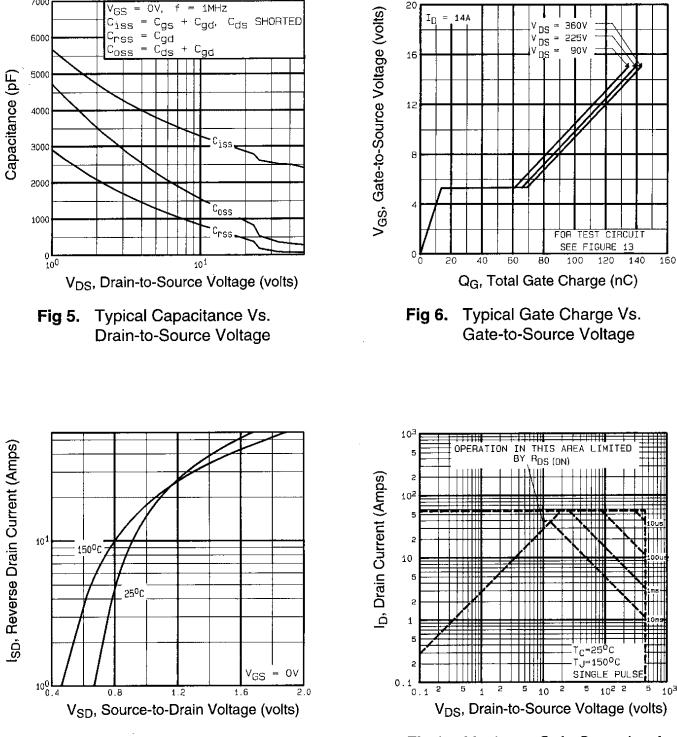
h

Electrical Characteristics @ $T_J = 25^{\circ}C$ (unless otherwise specified)

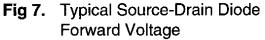
	Parameter	Min.	Тур.	Max.	Units	Test Conditions	
V(BR)DSS	Drain-to-Source Breakdown Voltage	450			V	V _{GS} =0V, I _D = 250μA	
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.61		V/°C	Reference to 25°C, ID= 1mA	
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.35	Ω	V _{GS} =10V, I _D =8.4A ④	
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	V _{DS} =V _{GS} , I _D = 250µA	
g fs	Forward Transconductance	5.9			S	V _{DS} =50V, I _D =8.4A ④	
	Drain-to-Source Leakage Current			25		V _{DS} =450V, V _{GS} =0V	
IDSS	Drain-to-Source Leakage Ourient	—		250	μA	V _{DS} =360V, V _{GS} =0V, T _J =125°C	
lgss	Gate-to-Source Forward Leakage			100	nA	V _{GS} =20V	
1055	Gate-to-Source Reverse Leakage			-100		V _{GS} =-20V	
Qg	Total Gate Charge			160	ļ	I _D =14A	
Q _{gs}	Gate-to-Source Charge			21	nC	V _{DS} =360V	
Q _{gd}	Gate-to-Drain ("Miller") Charge			83		V _{GS} =10V See Fig. 6 and 13 ④	
t _{d(on)}	Turn-On Delay Time	—	14			V _{DD} =225V	
t _r	Rise Time	_	44		ns	I _D =14A	
t _{d(off)}	Turn-Off Delay Time		89		113	R _G =6.2Ω	
t _f	Fall Time	_	46			$R_D=16\Omega$ See Figure 10 @	
LD	Internal Drain Inductance		5.0	_	nH	Between lead, 6 mm (0.25in.)	
Ls	Internal Source Inductance		13			from package and center of die contact	
C _{iss}	Input Capacitance		2700	_	_	V _{GS} =0V	
Coss	Output Capacitance		720	_	рF	V _{DS} = 25V	
Crss	Reverse Transfer Capacitance	_	300			f=1.0MHz See Figure 5	

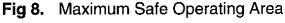

Source-Drain Ratings and Characteristics

	Parameter	Min.	Typ.	Max.	Units	Test Conditions
ls	Continuous Source Current (Body Diode)		<u> </u>	14		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①			56	A	integral reverse p-n junction diode.
V _{SD}	Diode Forward Voltage			1.5	V	T _J =25°C, I _S =14A, V _{GS} =0V ④
t _{rr}	Reverse Recovery Time		580	870	ns	TJ=25°C, IF≕14A
Qrr	Reverse Recovery Charge		5.1	7.6	μC	di/dt=100A/μs ④
ton	Forward Turn-On Time	Intrinsi	Intrinsic turn-on time is neglegible (turn-on is dominated by Ls+LD)			


Notes:

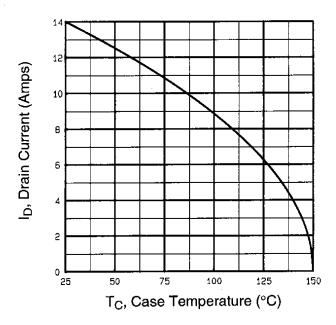
- ③ Repetitive rating; pulse width limited by max. junction temperature (See Figure 11)
- $v_{DD=50V}$, starting T_J=25°C, L=6.7mH R_G=25Ω, I_{AS}=14A (See Figure 12)
- ③ I_{SD}≤14A, di/dt≤125A/µs, V_{DD}≤V_{(BR)DSS}, T_J≤150°C
- ④ Pulse width \leq 300 μ s; duty cycle \leq 2%.

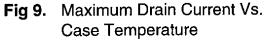

IQR



7000

20





IQI

IQR

IRFP354

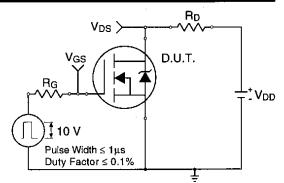


Fig 10a. Switching Time Test Circuit

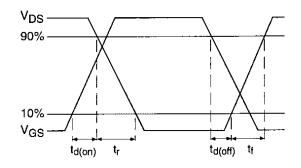


Fig 10b. Switching Time Waveforms

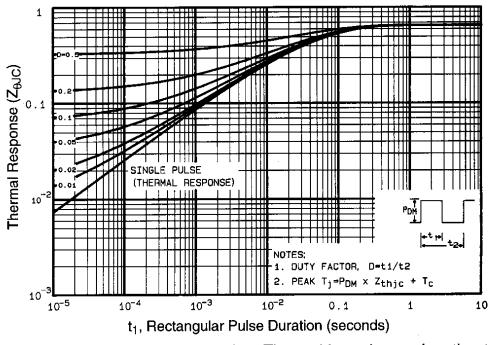


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

IRFP354

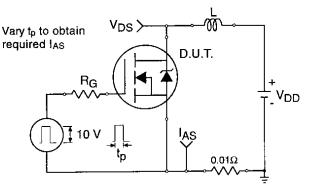


Fig 12a. Unclamped Inductive Test Circuit

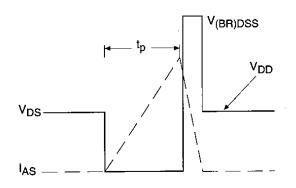


Fig 12b. Unclamped Inductive Waveforms

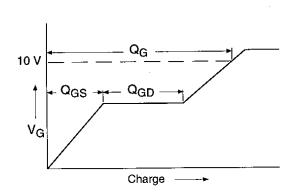
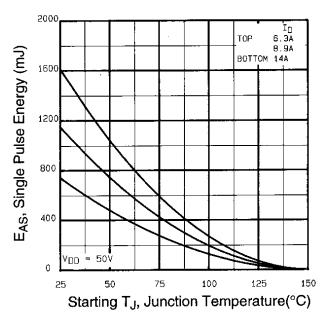



Fig 13a. Basic Gate Charge Waveform

IQR

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

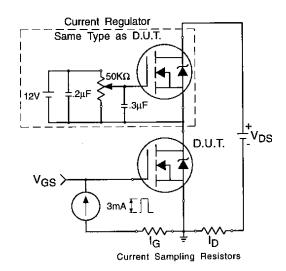
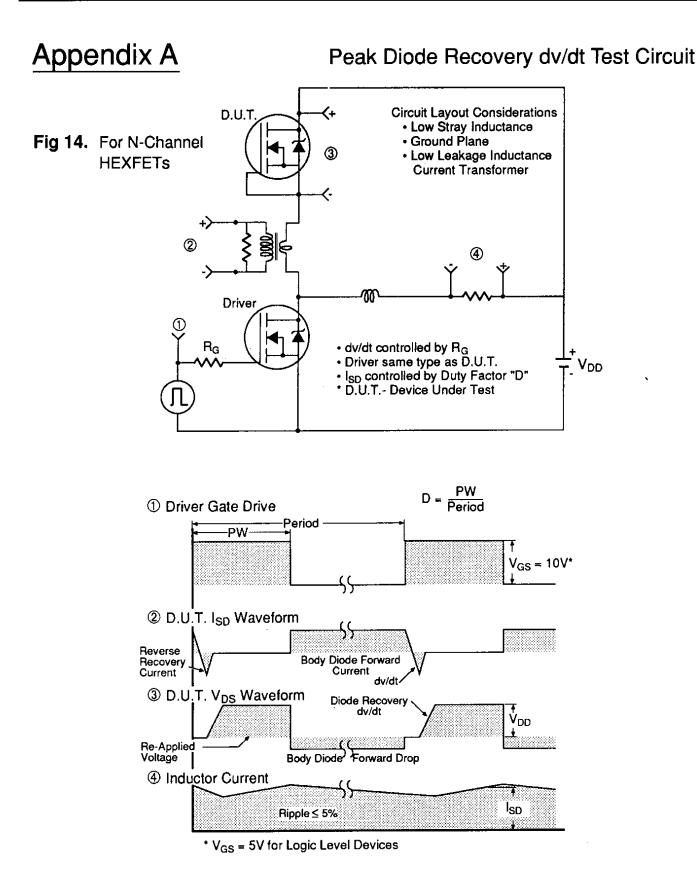
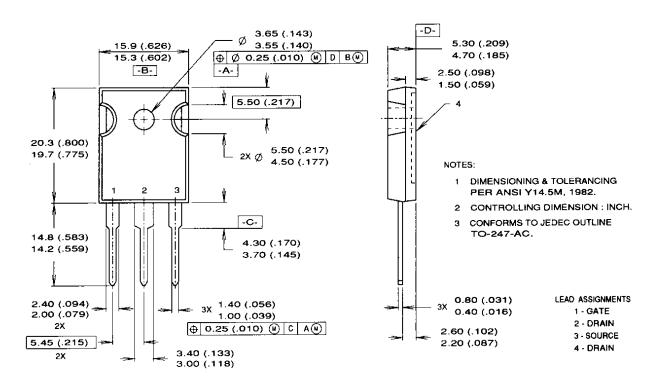



Fig 13b. Gate Charge Test Circuit

h



Downloaded from Elcodis.com electronic components distributor

Package Outline

TO-247AC Outline

Dimensions are shown in millimeters (inches)

Part Marking Information

TO-247AC

EXAMPLE: THIS IS AN IRFPE30 WITH ASSEMBLY LOT CODE 3A1Q INTERNATIONAL LOGO ASSEMBLY LOT CODE VYWW) YY = YEAR WW = WEEK

Printed on Signet recycled offset: made from 50% recycled waste paper, including 10% de-inked, post-consumer waste.

Appendix C

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322-3331, Twx: 4720403 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB England, Tel: (0883) 713215, Twx: 95219

IR CANADA: 101 Bentley St., Markham, Ontario L3R 3L1, Tel: (416) 475-1897. IR GERMANY: Saalburgstrasse 157, D-6380 Bad Homburg, Tel: 6172-37066. IR ITALY: Via Liguria 49 10071 Borgaro, Torino, Tel: (011) 470 1484. IR FAR EAST: K&H Building, 30-4 Nishiikebukuro 3-Chome, Toshima-ku, Tokyo 171 Japan, Tel: (03) 983 0641. IR SOUTHEAST ASIA: 190 Middle Road, HEX 10-01 Fortune Centre, Singapore 0718, Tel: (65) 336 3922.

Appendix B

h