March 2010

UniFET™

FAIRCHILD SEMICONDUCTOR

FDP8N50NZ / FDPF8N50NZ **N-Channel MOSFET** 500V, 8A, 0.85Ω

Features

- $R_{DS(on)} = 0.77\Omega$ (Typ.) @ $V_{GS} = 10V$, $I_D = 4A$
- Low Gate Charge (Typ. 14nC)
- Low C_{rss} (Typ. 5pF)
- · Fast Switching
- 100% Avalanche Tested
- Improve dv/dt Capability
- ESD Improved Capability

GDS

RoHS Compliant

This N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advance technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficient switching mode power supplies and active power factor correction.

MOSFET Maximum Ratings T _C = 25°C unless otherw		
	lise note	a
	100 11010	a

TO-220

FDP Series

Symbol		Parameter		FDP8N50NZ	FDPF8N50NZ	Units
V _{DSS}	Drain to Source Voltage			5	500	V
V _{GSS}	Gate to Source Voltage			E	£25	V
	Drain Current	-Continuous ($T_C = 25^{\circ}C$)		8	8*	٨
ID Drain Current	-Continuous ($T_C = 100^{\circ}C$)		4.8	4.8*	A	
I _{DM}	Drain Current	- Pulsed	(Note 1)	32	32*	А
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		2) 122		mJ	
I _{AR}	Avalanche Current		(Note 1)	8		А
E _{AR}	Repetitive Avalanche Energy		(Note 1)) 13		mJ
dv/dt	Peak Diode Recovery dv/dt		(Note 3)		10	V/ns
D	Dewer Dissingtion	$(T_{\rm C} = 25^{\rm o}{\rm C})$		130	40.3	W
P _D	Power Dissipation	- Derate above 25°C		1	0.3	W/ºC
T _J , T _{STG}	Operating and Storage Temperature Range		-55 t	o +150	°C	
TL	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds			3	300	°C
Drain current li	mited by maximum junction temperat	ure			1	

TO-220F

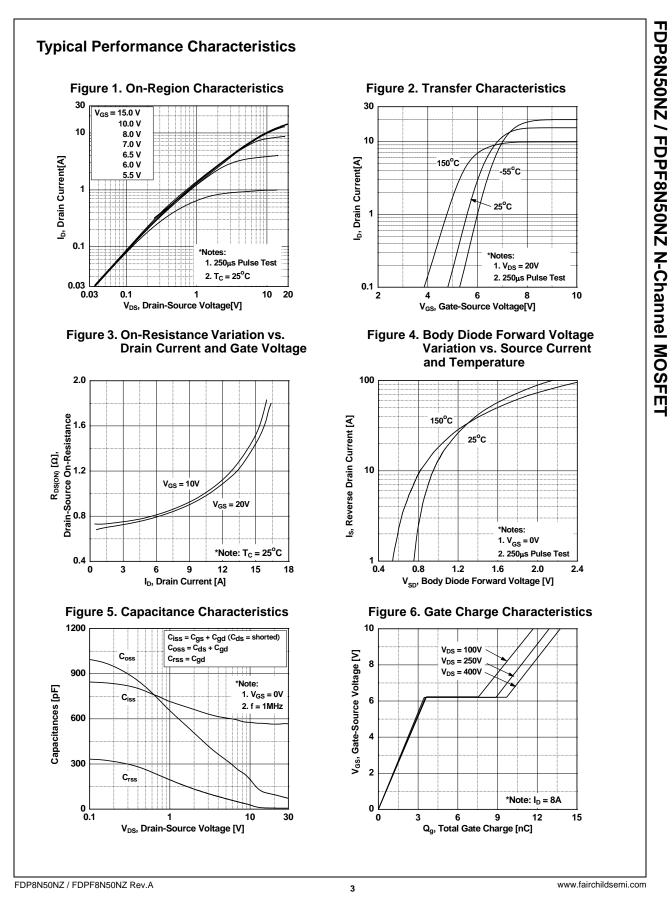
(potted)

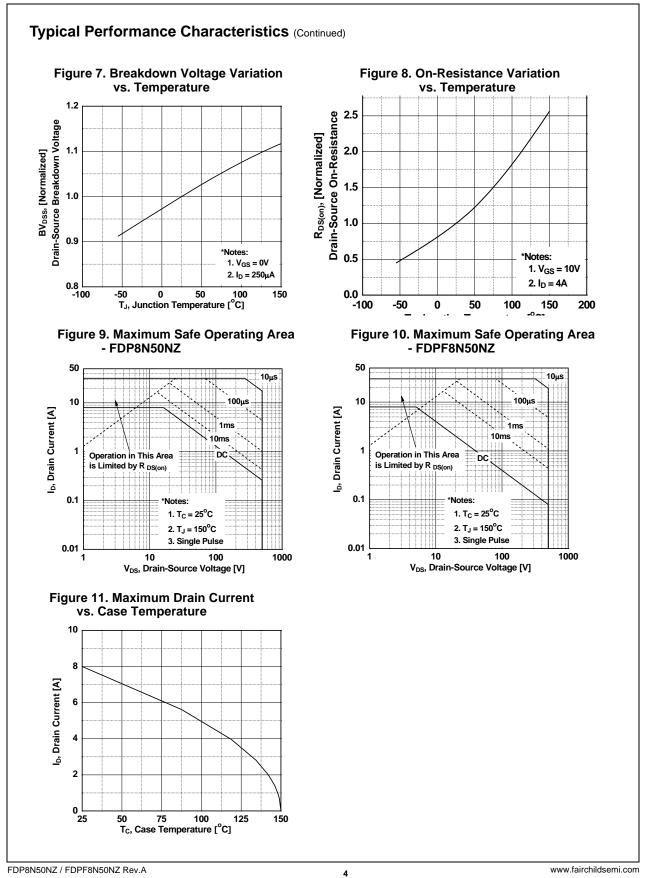
FDPF Series

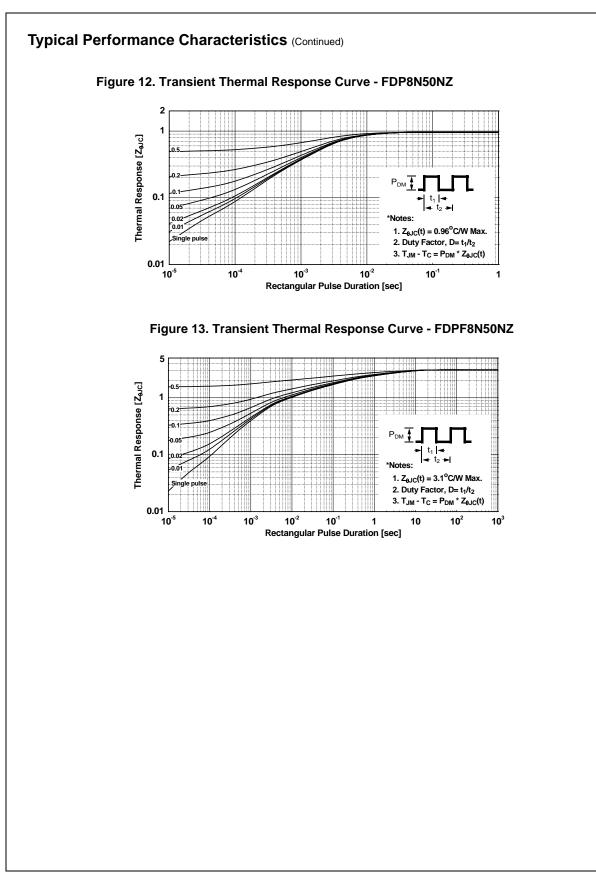
Thermal Characteristics

Symbol	Parameter F		FDPF8N50NZ	Units
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	0.96	3.1	
$R_{\theta CS}$	Thermal Resistance, Case to Sink Typ.		-	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	62.5	62.5	

©2010 Fairchild Semiconductor Corporation FDP8N50NZ / FDPF8N50NZ Rev.A

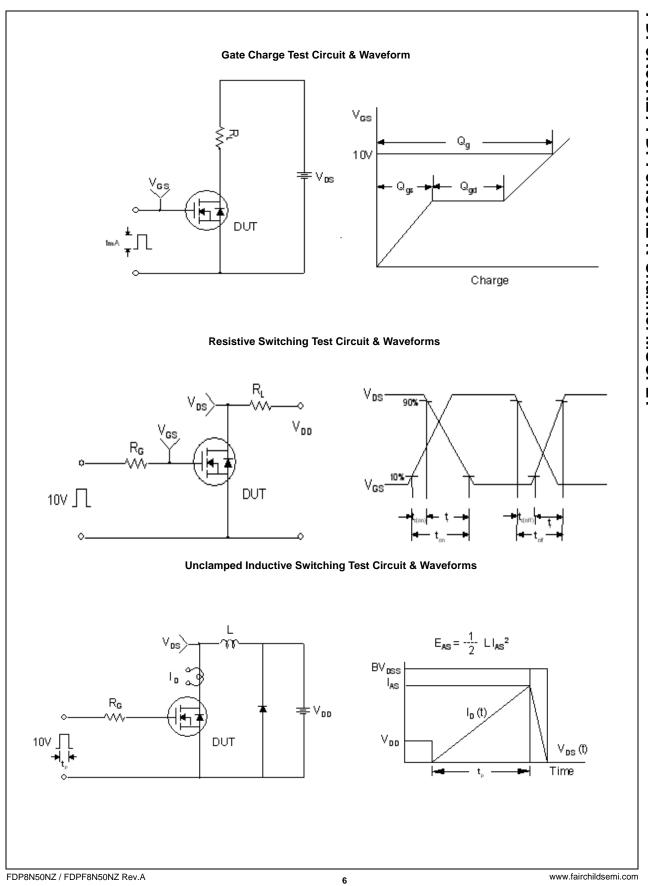

GDS

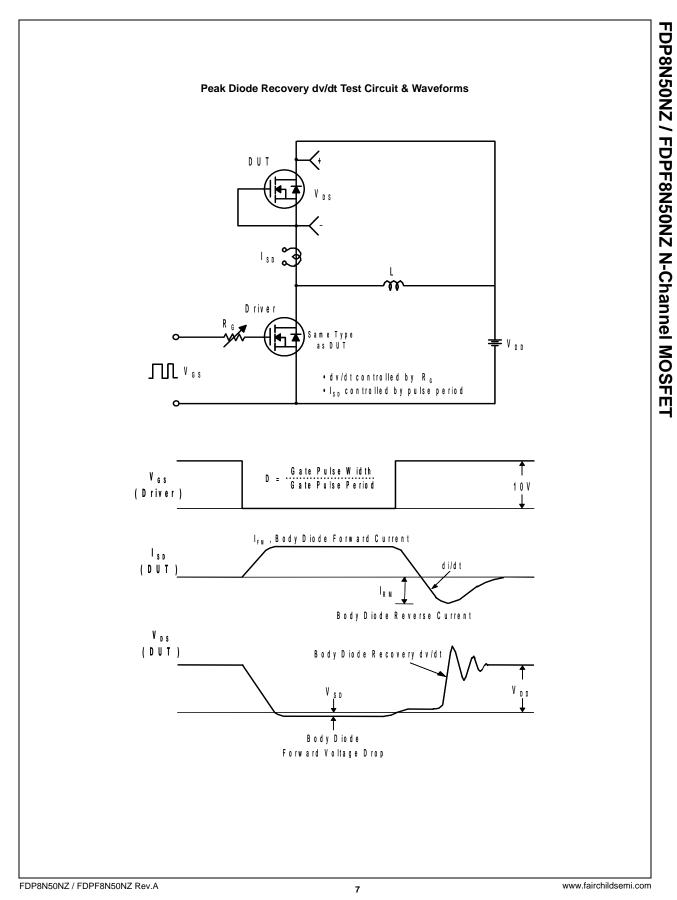


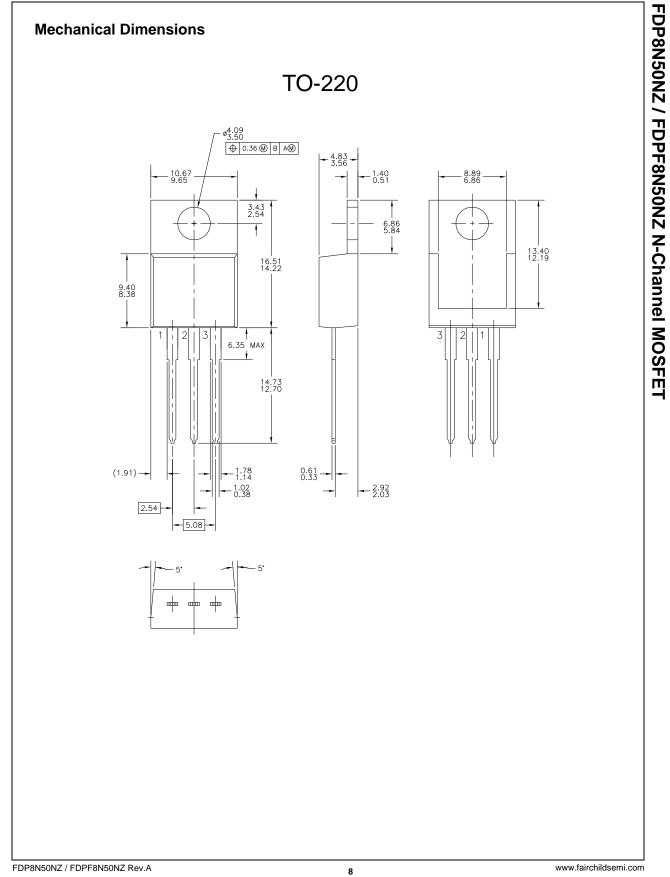

Z FDP8N50NZ Z FDPF8N50NZ Characteristics T Parameteristics rain to Source Breakdow reakdown Voltage Tempe oefficient ero Gate Voltage Drain C ate to Body Leakage Cur	r n Voltage	0F -	ditions		- - Min.	Тур.	50 50 Max.	Units
Characteristics T Paramete istics rain to Source Breakdow reakdown Voltage Tempe oefficient ero Gate Voltage Drain C	r c = 25°C unless r n Voltage	otherwise noted	ditions		- Min.	Тур.	I	Units
Paramete ristics rain to Source Breakdow reakdown Voltage Tempe oefficient ero Gate Voltage Drain C	r n Voltage	Test Con	ditions		Min.	Тур.	Max.	Units
ristics rain to Source Breakdow reakdown Voltage Tempe oefficient ero Gate Voltage Drain C	n Voltage		ditions		Min.	Тур.	Max.	Units
rain to Source Breakdow reakdown Voltage Tempe oefficient ero Gate Voltage Drain C	0	I _D = 250μA, V _{GS} =						
reakdown Voltage Tempe oefficient ero Gate Voltage Drain C	0	$I_{D} = 250 \mu A, V_{GS} =$						
oefficient ero Gate Voltage Drain C	rature		0V, T _C = 2	5°C	500	-	-	V
ero Gate Voltage Drain C		$I_D = 250 \mu A$, Referenced to $25^{\circ}C$			-	0.5	-	V/ºC
	o Gate Voltage Drain Current		0V		-	-	1	μA
ate to Body Leakage Cur		$V_{DS} = 400V, T_{C} = 2$			-	-	10	μΑ
		$V_{GS} = \pm 25V, V_{DS} = 0V$			-	-	±10	μA
istics								
ate Threshold Voltage		$V_{GS} = V_{DS}, I_D = 25$			3.0	-	5.0	V
					-	0.77	0.85	Ω
Forward Transconductance		$V_{DS} = 20V, I_D = \overline{4A}$		(Note 4)	-	6.3	-	S
racteristics								
put Capacitance	apacitance		0\/		-	565	735	pF
utput Capacitance		− v _{DS} = 25v, v _{GS} = f = 1MHz	υv		-	80	105	pF
•	nce				-	5	8	pF
otal Gate Charge at 10V					-	14	18	nC
		$v_{DS} = 400V, I_D = 8$	4	Ļ	-	4	-	nC nC
urn-On Rise Time							15	ne
		$V_{DD} = 250V, I_D = 8$ $R_0 = 250, V_{00} = 1$		_	-	17 34	45 80	ns ns
urn-Off Delay Time		$R_{G} = 25\Omega, V_{GS} = 1$	0V		-	34 43	80 95	ns ns
urn-Off Fall Time		$R_{G} = 25\Omega, V_{GS} = 1$			-	34	80	ns
Diode Characteris		R _G = 25Ω, V _{GS} = 1 (Not	0V		-	34 43 27	80 95 60	ns ns ns
urn-Off Fall Time Diode Characteris aximum Continuous Drain	n to Source Diod	$R_{G} = 25\Omega, V_{GS} = 1$ (Not	0V		-	34 43 27 -	80 95 60 8	ns ns ns A
urn-Off Fall Time Diode Characteris aximum Continuous Drain aximum Pulsed Drain to S	n to Source Diod Source Diode Fo	$R_{G} = 25\Omega, V_{GS} = 1$ (Not de Forward Current orward Current	0V 9 4, 5)		- - -	34 43 27 - -	80 95 60 8 30	ns ns ns A A
urn-Off Fall Time Diode Characteris aximum Continuous Drain	n to Source Diod Source Diode Fo	$R_{G} = 25\Omega, V_{GS} = 1$ (Not	0V e 4, 5)		-	34 43 27 -	80 95 60 8	ns ns ns A
	tatic Drain to Source On F porward Transconductance racteristics put Capacitance utput Capacitance everse Transfer Capacita otal Gate Charge at 10V ate to Source Gate Charge ate to Drain "Miller" Charge aracteristics urn-On Delay Time	tatic Drain to Source On Resistance prward Transconductance racteristics put Capacitance utput Capacitance everse Transfer Capacitance otal Gate Charge at 10V ate to Source Gate Charge ate to Drain "Miller" Charge aracteristics urn-On Delay Time	tatic Drain to Source On Resistance $V_{GS} = 10V$, $I_D = 4A$ proward Transconductance $V_{DS} = 20V$, $I_D = 4A$ racteristics $V_{DS} = 20V$, $I_D = 4A$ put Capacitance $V_{DS} = 25V$, $V_{GS} = 400V$ utput Capacitance $V_{DS} = 25V$, $V_{GS} = 400V$ everse Transfer Capacitance $V_{DS} = 400V$ ate to Source Gate Charge $V_{DS} = 400V$ ate to Drain "Miller" Charge $V_{GS} = 10V$ aracteristics $V_{GS} = 10V$ urn-On Delay Time $V_{DS} = 400V$	tatic Drain to Source On Resistance $V_{GS} = 10V$, $I_D = 4A$ prward Transconductance $V_{DS} = 20V$, $I_D = 4A$ racteristicsput Capacitance $V_{DS} = 25V$, $V_{GS} = 0V$ utput Capacitance $V_{DS} = 25V$, $V_{GS} = 0V$ everse Transfer Capacitance $V_{DS} = 400V$, $I_D = 8A$ otal Gate Charge at 10V $V_{DS} = 400V$, $I_D = 8A$ ate to Source Gate Charge $V_{GS} = 10V$ ate to Drain "Miller" Charge $V_{GS} = 10V$ aracteristics	tatic Drain to Source On Resistance $V_{GS} = 10V$, $I_D = 4A$ prward Transconductance $V_{DS} = 20V$, $I_D = 4A$ (Note 4) racteristics put Capacitance $V_{DS} = 25V$, $V_{GS} = 0V$ $f = 1MHz$ utput Capacitance $V_{DS} = 25V$, $V_{GS} = 0V$ $f = 1MHz$ everse Transfer Capacitance $V_{DS} = 400V$, $I_D = 8A$ $V_{GS} = 10V$ ate to Source Gate Charge $V_{GS} = 10V$ $V_{GS} = 10V$ ate to Drain "Miller" Charge $V_{GS} = 10V$ $V_{OS} = 10V$	tatic Drain to Source On Resistance $V_{GS} = 10V$, $I_D = 4A$ -porward Transconductance $V_{DS} = 20V$, $I_D = 4A$ -racteristicsput Capacitance $V_{DS} = 25V$, $V_{GS} = 0V$ -utput Capacitance $f = 1MHz$ -everse Transfer Capacitanceotal Gate Charge at 10V $V_{DS} = 400V$, $I_D = 8A$ -ate to Source Gate Charge $V_{GS} = 10V$ -ate to Drain "Miller" Chargearacteristics	tatic Drain to Source On Resistance $V_{GS} = 10V$, $I_D = 4A$ -0.77prward Transconductance $V_{DS} = 20V$, $I_D = 4A$ (Note 4)-6.3racteristicsput Capacitance $V_{DS} = 25V$, $V_{GS} = 0V$ $-$ 565utput Capacitance $f = 1MHz$ -500everse Transfer Capacitance $V_{DS} = 400V$, $I_D = 8A$ -14ate to Source Gate Charge $V_{GS} = 10V$ -6ate to Drain "Miller" Charge $V_{GS} = 10V$ -6	tatic Drain to Source On Resistance $V_{GS} = 10V$, $I_D = 4A$ -0.770.85prward Transconductance $V_{DS} = 20V$, $I_D = 4A$ (Note 4)-6.3-racteristicsput Capacitance $V_{DS} = 25V$, $V_{GS} = 0V$ $-$ 565735utput Capacitance $V_{DS} = 25V$, $V_{GS} = 0V$ $-$ 80105everse Transfer Capacitance $f = 1MHz$ -58otal Gate Charge at 10V $V_{DS} = 400V$, $I_D = 8A$ -1418ate to Source Gate Charge $V_{GS} = 10V$ (Note 4, 5)-6-aracteristics

FDP8N50NZ / FDPF8N50NZ N-Channel MOSFET

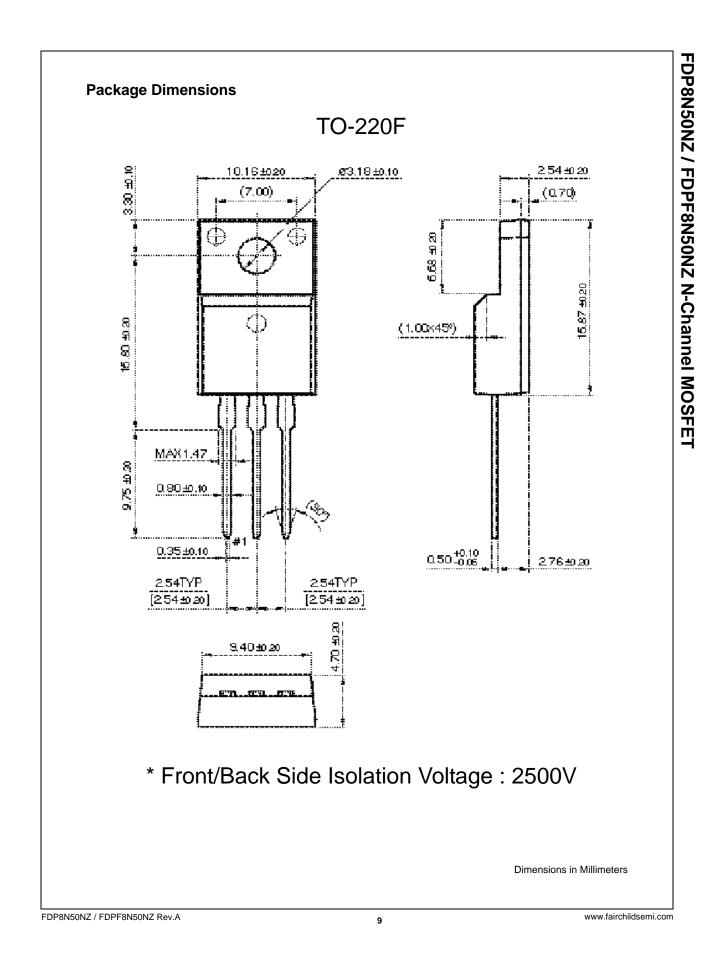
www.fairchildsemi.com







5


FDP8N50NZ / FDPF8N50NZ N-Channel MOSFET

FDP8N50NZ / FDPF8N50NZ Rev.A

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™	FPS™	PowerTrench [®]	The Power Franchis
Auto-SPM™	F-PFS™	PowerXS™	the m
Build it Now™	FRFET®	Programmable Active Droop [™]	p wer
CorePLUS™	Global Power Resource SM	QFET®	
CorePOWER™	Green FPS™	QS™	TinyBoost™
CROSSVOLT™	Green FPS [™] e-Series [™]	Quiet Series™	TinyBuck™
CTL™	Gmax™	RapidConfigure™	TinyCalc™
Current Transfer Logic™	GTO™		TinyLogic®
coSPARK [®]	IntelliMAX™	Т	TINYOPTO™
fficentMax™	ISOPLANAR™	Saving our world, 1mW /W /kW at a time™	TinyPower™
ZSWITCH™*	MegaBuck™	SmartMax™	TinyPWM™
TM*	MICROCOUPLER™	SMART START™	TinyWire™
	MicroFET™	SPM®	TriFault Detect™
	MicroPak™	STEALTH™	TRUECURRENT [™]
F .	MillerDrive™	SuperFET™	
airchild®	MotionMax™	SuperSOT™-3	SerDes
airchild Semiconductor [®]	Motion-SPM [™]	SuperSOT™-6	UHC®
ACT Quiet Series™	OPTOLOGIC®	SuperSOT™-8	Ultra FRFET™
ACT®	OPTOPLANAR [®]	SupreMOS™	UniFET™
AST®	®	SyncFET™	VCX [™]
astvCore™	(1)	Sync-Lock™	VisualMax™
ETBench™		SYSTEM ®*	XS™
-lashWriter [®] *	PDP SPM™	GENERAL	
	Power-SPM™	GENERAL	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

FDP8N50NZ / FDPF8N50NZ Rev.A