MTD6N15

Power Field Effect Transistor DPAK for Surface Mount

N-Channel Enhancement-Mode Silicon Gate

This TMOS Power FET is designed for high speed, low loss power switching applications such as switching regulators, converters, solenoid and relay drivers.

Features

- Silicon Gate for Fast Switching Speeds
- Low $\mathrm{R}_{\mathrm{DS}(\text { on) }}-0.3 \Omega$ Max
- Rugged - SOA is Power Dissipation Limited
- Source-to-Drain Diode Characterized for Use With Inductive Loads
- Low Drive Requirement - $\mathrm{V}_{\mathrm{GS}(\mathrm{th})}=4.0 \mathrm{~V}$ Max
- Surface Mount Package on 16 mm Tape
- Pb -Free Package is Available

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	$\mathrm{V}_{\text {DSS }}$	150	Vdc
Drain-Gate Voltage ($\mathrm{R}_{\mathrm{GS}}=1.0 \mathrm{MS}$)	$V_{\text {DGR }}$	150	Vdc
Gate-Source Voltage - Continuous - Non-Repetitive ($\mathrm{t}_{\mathrm{p}} \leq 50 \mu \mathrm{~s}$)	$\begin{gathered} \mathrm{v}_{\mathrm{GS}} \\ \mathrm{v}_{\mathrm{GSM}} \end{gathered}$	$\begin{aligned} & \pm 20 \\ & \pm 40 \end{aligned}$	Vdc Vpk
Drain Current - Continuous - Pulsed	$\begin{aligned} & \mathrm{I}_{\mathrm{D}} \\ & \mathrm{I}_{\mathrm{DM}} \end{aligned}$	$\begin{aligned} & 6.0 \\ & 20 \end{aligned}$	Adc
Total Power Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	$P_{\text {D }}$	$\begin{gathered} 20 \\ 0.16 \end{gathered}$	$\begin{gathered} \mathrm{W} \\ \mathrm{~W} /{ }^{\circ} \mathrm{C} \end{gathered}$
Total Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$ (Note 1)	P_{D}	$\begin{aligned} & 1.25 \\ & 0.01 \end{aligned}$	$\begin{gathered} \mathrm{W} \\ \mathrm{~W} /{ }^{\circ} \mathrm{C} \end{gathered}$
Total Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 1) Derate above $25^{\circ} \mathrm{C}$ (Note 2)	$P_{\text {D }}$	$\begin{gathered} 1.75 \\ 0.014 \end{gathered}$	$\begin{gathered} \mathrm{W} \\ \mathrm{~W} /{ }^{\circ} \mathrm{C} \end{gathered}$
Operating and Storage Junction Temperature Range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\mathrm{stg}}$	-65 to +150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance			${ }^{\circ} \mathrm{C} / \mathrm{W}$
- Junction-to-Case	$\mathrm{R}_{\theta J \mathrm{C}}$	6.25	
- Junction-to-Ambient (Note 1)	$\mathrm{R}_{\theta J \mathrm{~A}}$	100	
- Junction-to-Ambient (Note 2)	$\mathrm{R}_{\theta J A}$	71.4	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. When surface mounted to an FR4 board using the minimum recommended pad size.
2. When surface mounted to an FR4 board using 0.5 sq. in. drain pad size.
ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

ORDERING INFORMATION

Device	Package	Shipping †
MTD6N15T4	DPAK	2500/Tape \& Reel
MTD6N15T4G	DPAK (Pb-Free)	2500/Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Drain-Source Breakdown Voltage ($\left.\mathrm{V}_{\mathrm{GS}}=0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=0.25 \mathrm{mAdc}\right)$	$\mathrm{V}_{\text {(BR) }{ }^{\text {dSS }}}$	150	-	Vdc
$\begin{aligned} & \text { Zero Gate Voltage Drain Current } \\ & \left(\mathrm{V}_{\mathrm{DS}}=\text { Rated } \mathrm{V}_{\mathrm{DSS}}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{Vdc}\right) \\ & \mathrm{T}_{J}=125^{\circ} \mathrm{C} \end{aligned}$	IDSS	-	$\begin{gathered} 10 \\ 100 \end{gathered}$	$\mu \mathrm{Adc}$
Gate-Body Leakage Current, Forward ($\mathrm{V}_{\mathrm{GSF}}=20 \mathrm{Vdc}, \mathrm{V}_{\mathrm{DS}}=0$)	IGSSF	-	100	nAdc
Gate-Body Leakage Current, Reverse ($\mathrm{V}_{\mathrm{GSR}}=20 \mathrm{Vdc}, \mathrm{V}_{\mathrm{DS}}=0$)	IGSSR	-	100	nAdc

ON CHARACTERISTICS (Note 3)

Gate Threshold Voltage ($\left.\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=1.0 \mathrm{mAdc}\right)$ $T_{J}=100^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{GS} \text { (th) }}$	2.0 1.5	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	Vdc
Static Drain-Source On-Resistance ($\mathrm{V}_{\mathrm{GS}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=3.0 \mathrm{Adc}$)	$\mathrm{R}_{\text {DS(on) }}$	-	0.3	Ω
$\begin{aligned} & \text { Drain-Source On-Voltage }\left(\mathrm{V}_{\mathrm{GS}}=10 \mathrm{Vdc}\right) \\ & \quad\left(\mathrm{I}_{\mathrm{D}}=6.0 \mathrm{Adc}\right) \\ & \quad\left(\mathrm{I}_{\mathrm{D}}=3.0 \mathrm{Adc}, \mathrm{~T}_{J}=100^{\circ} \mathrm{C}\right) \end{aligned}$	$\mathrm{V}_{\text {DS(on) }}$	-	1.8 1.5	Vdc
Forward Transconductance ($\mathrm{V}_{\mathrm{DS}}=15 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=3.0 \mathrm{Adc}$)	gFS	2.5	-	mhos

DYNAMIC CHARACTERISTICS

Input Capacitance	$\begin{gathered} \left(\mathrm{V}_{\mathrm{DS}}=25 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{MHz}\right) \\ (\text { See Figure 11) } \end{gathered}$	$\mathrm{C}_{\text {iss }}$	-	1200	pF
Output Capacitance		$\mathrm{C}_{\text {oss }}$	-	500	
Reverse Transfer Capacitance		$\mathrm{C}_{\text {rss }}$	-	120	

SWITCHING CHARACTERISTICS* $\left(T_{J}=100^{\circ} \mathrm{C}\right)$

Turn-On Delay Time	$\begin{gathered} \left(\mathrm{V}_{\mathrm{DD}}=\underset{\text { (See Figures } 13 \text { and } 14 \text {) }}{\left.25 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=3.0 \mathrm{Adc}, \mathrm{R}_{\mathrm{G}}=50 \Omega\right)} .\right. \end{gathered}$	$\mathrm{t}_{\mathrm{d}(\mathrm{on})}$	-	50	ns
Rise Time		t_{r}	-	180	
Turn-Off Delay Time		$\mathrm{t}_{\mathrm{d} \text { (off) }}$	-	200	
Fall Time		t_{f}	-	100	
Total Gate Charge	$\begin{gathered} \left(\mathrm{V}_{\mathrm{DS}}=0.8 \text { Rated } \mathrm{V}_{\mathrm{DSS}},\right. \\ \left.\mathrm{I}_{\mathrm{D}}=\text { Rated } \mathrm{I}_{\mathrm{D},} \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{Vdc}\right) \\ (\text { See Figure 12) } \end{gathered}$	Q_{g}	15 (Typ)	30	nC
Gate-Source Charge		Q_{gs}	8.0 (Typ)	-	
Gate-Drain Charge		Q_{gd}	7.0 (Typ)	-	

SOURCE-DRAIN DIODE CHARACTERISTICS*

Forward On-Voltage	$\left(\mathrm{I}_{\mathrm{S}}=6.0 \mathrm{Adc}, \mathrm{di} / \mathrm{dt}=25 \mathrm{~A} / \mathrm{us}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{Vdc}\right)$	$V_{S D}$	1.3 (Typ)	2.0	Vdc
Forward Turn-On Time		$\mathrm{t}_{\text {on }}$	Limited by stray inductance		
Reverse Recovery Time		t_{rr}	325 (Typ)	-	ns

3. Pulse Test: Pulse Width $\leq 300 \mu \mathrm{~s}$, Duty Cycle $\leq 2 \%$.

Figure 1. Power Derating

MTD6N15

TYPICAL ELECTRICAL CHARACTERISTICS

Figure 2. On-Region Characteristics

Figure 4. Transfer Characteristics

Figure 3. Gate-Threshold Voltage Variation With Temperature

Figure 6. On-Resistance versus Drain Current

Figure 7. On-Resistance Variation With Temperature

SAFE OPERATING AREA

Figure 8. Maximum Rated Forward Biased Safe Operating Area

FORWARD BIASED SAFE OPERATING AREA

The FBSOA curves define the maximum drain-to-source voltage and drain current that a device can safely handle when it is forward biased, or when it is on, or being turned on. Because these curves include the limitations of simultaneous high voltage and high current, up to the rating of the device, they are especially useful to designers of linear systems. The curves are based on a case temperature of $25^{\circ} \mathrm{C}$ and a maximum junction temperature of $150^{\circ} \mathrm{C}$. Limitations for repetitive pulses at various case temperatures can be determined by using the thermal response curves. Motorola Application Note, AN569, "Transient Thermal Resistance-General Data and Its Use" provides detailed instructions.

Figure 9. Maximum Rated Switching Safe Operating Area

SWITCHING SAFE OPERATING AREA

The switching safe operating area (SOA) of Figure 9 is the boundary that the load line may traverse without incurring damage to the MOSFET. The fundamental limits are the peak current, I_{DM} and the breakdown voltage, $\mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}$. The switching SOA shown in Figure 8 is applicable for both turn-on and turn-off of the devices for switching times less than one microsecond.

The power averaged over a complete switching cycle must be less than:

$$
\frac{T_{J(\max)}-T_{C}}{R_{\text {OJC }}}
$$

Figure 10. Thermal Response

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)
Figure 11. Capacitance Variation

Figure 12. Gate Charge versus Gate-To-Source Voltage

RESISTIVE SWITCHING

Figure 13. Switching Test Circuit

Figure 14. Switching Waveforms

MTD6N15

PACKAGE DIMENSIONS

DPAK
CASE 369C-01
ISSUE O

NOTES:

1. DIMENSIONING AND TOLERANCING

PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.235	0.245	5.97	6.22
B	0.250	0.265	6.35	6.73
C	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
E	0.018	0.023	0.46	0.58
F	0.037	0.045	0.94	1.14
G	0.180 BSC		4.58 BSC	
H	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
K	0.102	0.114	2.60	2.89
L	0.090 BSC		2.29 BSC	
R	0.180	0.215	4.57	5.45
S	0.025	0.040	0.63	1.01
U	0.020	---	0.51	---
V	0.035	0.050	0.89	1.27
Z	0.155	---	3.93	---

STYLE 2:
PIN 1. GATE
2. DRAIN
3. SOURCE
4. DRAIN

SOLDERING FOOTPRINT*

*For additional information on our $\mathrm{Pb}-F r e e$ strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

[^0]
PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421337902910
Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

[^0]: ON Semiconductor and 01 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

