Power MOSFET

40 V, 38 A, Single N-Channel, DPAK

Features

- Low R_{DS(on)}
- High Current Capability
- Low Gate Charge
- These are Pb-Free Devices

Applications

- Electronic Brake Systems
- Electronic Power Steering
- Bridge Circuits

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

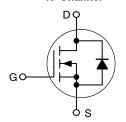
Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	40	V
Gate-to-Source Voltage			V _{GS}	±20	V
Continuous Drain	Steady	T _C = 25°C	I _D	38	Α
Current – R _{θJC}	State	T _C = 100°C		27	
Power Dissipation – $R_{\theta JC}$	Steady State	T _C = 25°C	P _D	75	W
Continuous Drain	Steady	T _A = 25°C	I _D	7.6	Α
Current R _{θJA} (Note 1)	State	T _A = 100°C		5.3	
Power Dissipation – R _{θJA} (Note 1)	Steady State	T _A = 25°C	P _D	2.9	W
Pulsed Drain Current	n Current t _p = 10 μs		I _{DM}	75	Α
Operating Junction and Storage Temperature			T _J , T _{STG}	–55 to 175	°C
Source Current (Body Diode)			I _S	36	Α
Single Pulse Drain-to Source Avalanche Energy – (V_{DD} = 50 V, V_{GS} = 10 V, I_{PK} = 17 A, L = 1 mH, R_G = 25 Ω)			EAS	150	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			T _L	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

THERMAL RESISTANCE RATINGS (Note 1)

Parameter	Symbol	Max	Unit
Junction-to-Case (Drain)	$R_{\theta JC}$	2.0	°C/W
Junction-to-Case (Note 1)	$R_{\theta JA}$	52	°C/W

 Surface mounted on FR4 board using 1 sq in pad size, (Cu Area 1.127 sq in [2 oz] including traces).



ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(ON)} TYP	I _D MAX (Note 1)
40 V	21 mΩ @ 10 V	38 A

N-Channel

STYLE 2

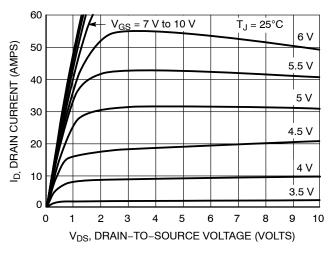
MARKING DIAGRAM

Y = Year WW = Work Week

5407N = Specific Device Code G = Pb-Free Device

ORDERING INFORMATION

Device	Package	Shipping†
NTD5407NG	DPAK (Pb-Free)	75 Units / Rail
NTD5407NT4G	DPAK (Pb-Free)	2500 / Tape & Reel


†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise stated)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS			•				
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		40			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				39		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$			1.0	μΑ
		$V_{DS} = 40 \text{ V}$	T _J = 100°C			10	
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = ±30 V				±100	nA
ON CHARACTERISTICS (Note 2)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{E}$) = 250 μΑ	1.5		3.5	V
Gate Threshold Temperature Coefficient	V _{GS(TH)} /T _J				-6.0		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V,	I _D = 20 A		21	26	mΩ
		V _{GS} = 5.0 V,	I _D = 10 A		32	40	7
Forward Transconductance	9FS	V _{GS} = 10 V,	I _D = 18 A		15		S
CHARGES AND CAPACITANCES	•		•				
Input Capacitance	C _{ISS}				615	1000	pF
Output Capacitance	C _{OSS}	$V_{GS} = 0 \text{ V, f} = 0 \text{ V}$	1.0 MHz, 32 V		173		
Reverse Transfer Capacitance	C _{RSS}	ν _{DS} = 32 ν			80		
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = 10 \text{ V}, V_{DS} = 32 \text{ V},$ $I_{D} = 38 \text{ A}$			20		nC
Gate-to-Source Charge	Q_{GS}				2.25		
Gate-to-Drain Charge	Q_{GD}				10.5		
SWITCHING CHARACTERISTICS, VC	as = 10 V (Note :	3)					
Turn-On Delay Time	t _{d(ON)}	V _{GS} = 10 V, V _{DD} = 32 V,			6.8		ns
Rise Time	t _r				17		7
Turn-Off Delay Time	t _{d(OFF)}	$I_D = 38 \text{ A}, R_0$	$G = 2.5 \Omega$		66		1
Fall Time	t _f		ļ		51		7
SWITCHING CHARACTERISTICS, VC	as = 5 V (Note 3))	•		-	-	
Turn-On Delay Time	t _{d(ON)}				10		ns
Rise Time	t _r	V _{GS} = 5 V, V _E	_{DD} = 20 V,		175		7
Turn-Off Delay Time	t _{d(OFF)}	$I_D = 20 \text{ A}, R_0$	$G = 2.5 \Omega$		13		7
Fall Time	t _f				23		7
DRAIN-SOURCE DIODE CHARACTE	RISTICS (Note	2)	•				-
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V, I _S = 5.0 A	T _J = 25°C		0.9	1.1	V
Davissa Davissa Tarr		., 5.571	T _J = 125°C		0.75		<u> </u>
Reverse Recovery Time	t _{RR}	V_{GS} = 0 V, dI_S/dt = 100 A/ μ s, I_S = 15 A			38		ns
Charge Time	t _a				20.5		4
Discharge Time	t _b				17		1
Reverse Recovery Charge 2. Pulse Test: pulse width ≤ 300 μs, dut	Q_{RR}				40		nC

Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

TYPICAL PERFORMANCE CURVES

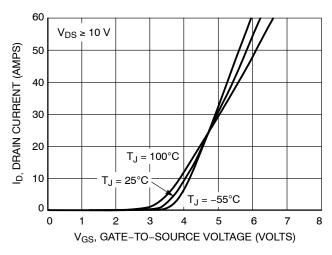
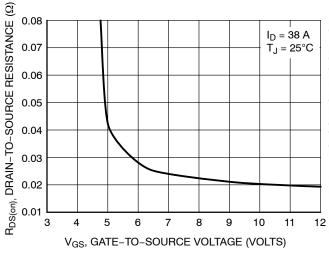



Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

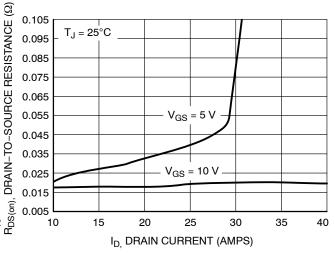
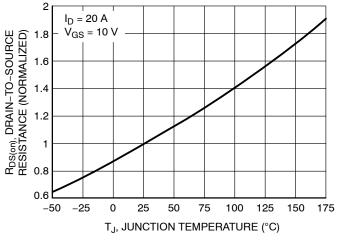



Figure 3. On-Resistance vs. Gate-to-Source Voltage

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

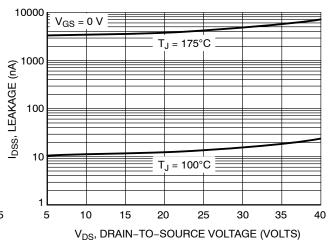
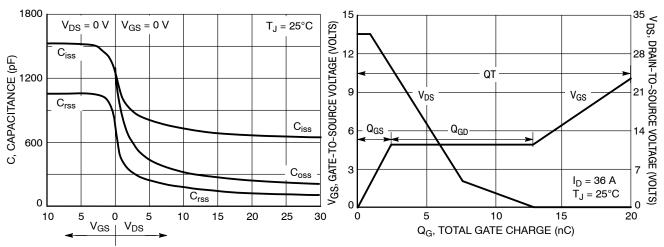



Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL PERFORMANCE CURVES

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)

Figure 7. Capacitance Variation

Figure 8. Gate-To-Source and Drain-To-Source Voltage vs. Total Charge

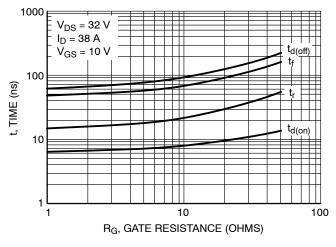


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

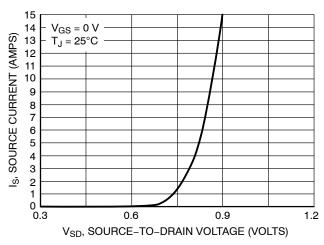


Figure 10. Diode Forward Voltage vs. Current

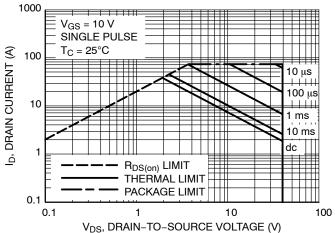
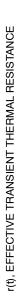



Figure 11. Maximum Rated Forward Biased
Safe Operating Area

TYPICAL PERFORMANCE CURVES

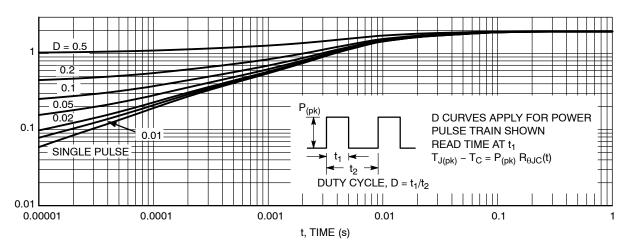
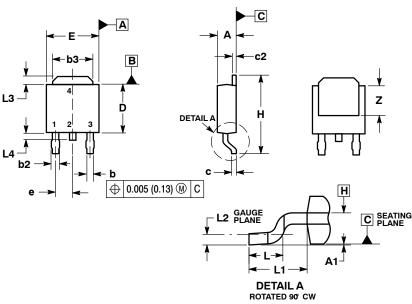
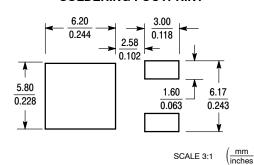



Figure 12. Thermal Response


PACKAGE DIMENSIONS

DPAK (SINGLE GAUGE)

CASE 369C-01 ISSUE D

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering Mounting Techniques Reference Manual, SOLDERRM/D.

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: INCHES.
 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS b3, L3 and Z.
- 4 DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE
- 5. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.

	INC	пЕС	MILLIM	ETERS	
	INCHES				
DIM	MIN	MAX	MIN	MAX	
Α	0.086	0.094	2.18	2.38	
A1	0.000	0.005	0.00	0.13	
b	0.025	0.035	0.63	0.89	
b2	0.030	0.045	0.76	1.14	
b3	0.180	0.215	4.57	5.46	
С	0.018	0.024	0.46	0.61	
c2	0.018	0.024	0.46	0.61	
D	0.235	0.245	5.97	6.22	
Е	0.250	0.265	6.35	6.73	
е	0.090	BSC	2.29	BSC	
Н	0.370	0.410	9.40	10.41	
L	0.055	0.070	1.40	1.78	
L1	0.108	REF	2.74	REF	
L2	0.020	BSC	0.51	BSC	
L3	0.035	0.050	0.89	1.27	
L4		0.040		1.01	
Z	0.155		3.93		

STYLE 2: PIN 1. GATE 2. DRAIN

3. SOURCE 4. DRAIN

details, please download the ON Semiconductor Soldering and

ON Semiconductor and 📖 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

NTD5407N/D