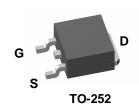
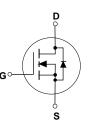


FDD2670

200V N-Channel PowerTrench[®] MOSFET

General Description


This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers.


These MOSFETs feature faster switching and lower gate charge than other MOSFETs with comparable $\text{RDS}_{(\text{ON})}$ specifications.

The result is a MOSFET that is easy and safer to drive (even at very high frequencies), and DC/DC power supply designs with higher overall efficiency.

Features

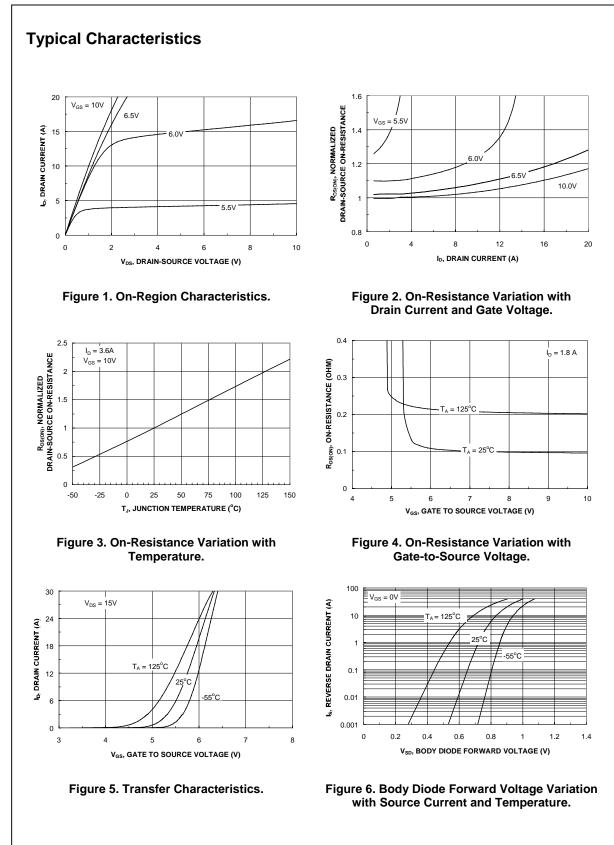
- 3.6 A, 200 V. $R_{\text{DS(ON)}}$ = 130 m Ω @ V_{GS} = 10 V
- Low gate charge
- Fast switching speed
- High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$
- High power and current handling capability

Absolute Maximum Ratings T_A=25°C unless otherwise noted

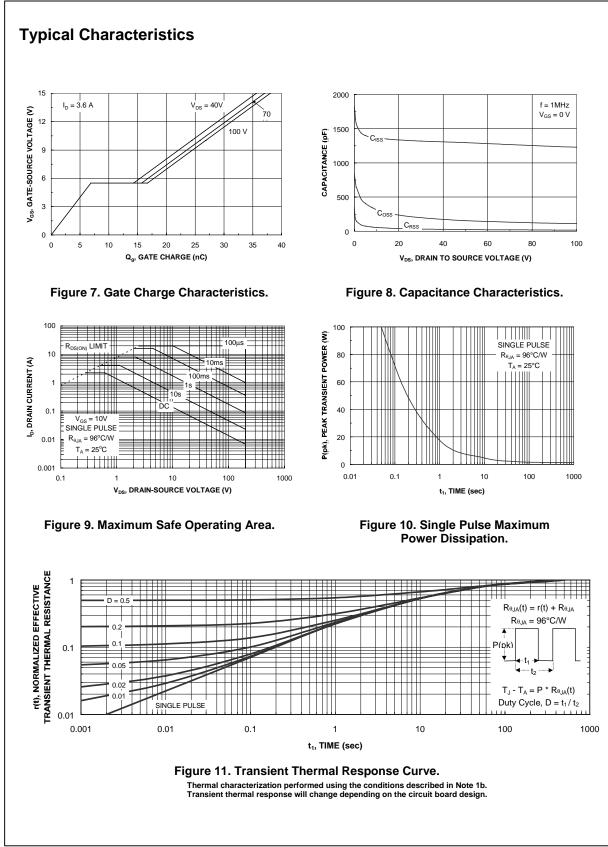
Symbol	Parameter		Ratings	Units
V _{DSS}	Drain-Source Voltage		200	V
V _{GSS}	Gate-Source Voltage		±20	V
ID	Drain Current – Continuous	(Note 1)	3.6	A
	Drain Current – Pulsed		20	
PD	Maximum Power Dissipation @ $T_c = 25^{\circ}C$	(Note 1)	70	W
	@ T _A = 25°C	(Note 1a)	3.2	
	@ T _A = 25°C	(Note 1b)	1.3	
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	3.2	V/ns
T_J, T_{STG}	Operating and Storage Junction Temperatu	re Range	-55 to +150	°C
Therma	I Characteristics			
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	(Note 1)	1.8	°C/W
R _{0JA}	Thermal Resistance, Junction-to-Ambient	(Note 1b)	96	°C/W

Package Marking and Ordering Information

		•
FDD2670 FDD2670 13" 16	mm 2500) units


©2001 Fairchild Semiconductor Corporation

FDD2670


W _{DSS} Sinu Ava Ava I _{AR} Max Cur Off Character BV _{DSS} Dra <u>ΔBV_{DSS}</u> Bre ΔTJ Coe I _{DSS} Zer I _{GSSF} Gat	in–Source Breakdown Voltage akdown Voltage Temperature efficient o Gate Voltage Drain Current	1) $V_{DD} = 100 \text{ V}, I_D = 3.6 \text{ A}$ $V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$ $I_D = 250 \mu\text{A}, \text{ Referenced to } 25^{\circ}\text{C}$	200		375 3.6	mJ A
W _{DSS} Sinu Ava Ava I _{AR} Max Cur Off Character BV _{DSS} BV _{DSS} Dra <u>ΔBV_{DSS}</u> Bre ΔT _J Coe I _{DSS} Zer I _{GSSF} Gat	gle Pulse Drain-Source Ilanche Energy kimum Drain-Source Avalanche rent eristics in–Source Breakdown Voltage akdown Voltage Temperature efficient o Gate Voltage Drain Current	$V_{DD} = 100 \text{ V}, I_D = 3.6 \text{ A}$ $V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	200			
I _{AR} Max Cur Off Character BV _{DSS} Dra ΔBVDSS Bre ΔTJ Coe I _{DSS} Zer I _{GSSF} Gat	kimum Drain-Source Avalanche rent in–Source Breakdown Voltage akdown Voltage Temperature efficient o Gate Voltage Drain Current		200		3.6	A
Off Character BV _{DSS} Dra ΔBV _{DSS} Bre ΔT _J Coe I _{DSS} Zer I _{GSSF} Gat	eristics in–Source Breakdown Voltage akdown Voltage Temperature efficient o Gate Voltage Drain Current		200	1		
BV _{DSS} Dra ΔBV _{DSS} Bre ΔT _J Coe I _{DSS} Zer I _{GSSF} Gat	in–Source Breakdown Voltage akdown Voltage Temperature efficient o Gate Voltage Drain Current		200		•	L
ΔBVDSS Bre ΔTJ Coe IDSS Zer IGSSF Gat IGSSR Gat	akdown Voltage Temperature efficient o Gate Voltage Drain Current					V
I _{DSS} Zer I _{GSSF} Gat I _{GSSR} Gat	-			214		mV/°C
I _{GSSR} Gat	- Dady Laskana Famuland	$V_{DS} = 160 \text{ V}, V_{GS} = 0 \text{ V}$			1	μA
	e–Body Leakage, Forward	$V_{GS} = 20 \text{ V}, \qquad V_{DS} = 0 \text{ V}$			100	NA
On Characte	e-Body Leakage, Reverse	$V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$			-100	NA
	eristics (Note 2)	·				
V _{GS(th)} Gat	e Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	2	4	4.5	V
	e Threshold Voltage nperature Coefficient	$I_D = 250 \ \mu\text{A}$, Referenced to 25°C		-10		mV/°C
= = (=)	tic Drain–Source -Resistance			100 205	130 275	mΩ
I _{D(on)} On-	-State Drain Current	$V_{GS} = 10 \text{ V}, \qquad V_{DS} = 5 \text{ V}$	20			A
g _{FS} For	ward Transconductance	$V_{DS} = 5 V$, $I_{D} = 3.6 A$		15		S
Dynamic Ch	aracteristics					
C _{iss} Inp	ut Capacitance	$V_{DS} = 100 \text{ V}, \qquad V_{GS} = 0 \text{ V},$		1228		PF
C _{oss} Out	put Capacitance	f = 1.0 MHz		112		PF
C _{rss} Rev	verse Transfer Capacitance			17		pF
Switching C	haracteristics (Note 2)					
	n–On Delay Time	$V_{DD} = 100 V, I_D = 1 A,$		13	23	ns
t _r Tur	n–On Rise Time	$V_{GS} = 10 \text{ V}, \qquad R_{GEN} = 6 \Omega$		8	16	ns
t _{d(off)} Tur	n–Off Delay Time	7		30	48	ns
t _f Tur	n–Off Fall Time	7		25	40	ns
Q _g Tota	al Gate Charge	$V_{DS} = 100 \text{ V}, \qquad I_{D} = 3.6 \text{ A},$		27	43	nC
Q _{gs} Gat	e-Source Charge	V _{GS} = 10 V		7		nC
Q _{gd} Gat	e–Drain Charge	-		10		nC
Drain-Sour	ce Diode Characteristics	and Maximum Ratings				
	kimum Continuous Drain–Source	•			2.1	A
Ven	in–Source Diode Forward tage	$V_{GS} = 0 V$, $I_S = 2.1 A$ (Note 2)		0.7	1.2	V
V _{SD} Volt lotes: . R _{eJA} is the sum of the	tage	nal resistance where the case thermal reference i	s defined a			

2. Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0%

3. $I_{SD} \leq$ 3A, di/dt \leq 100A/µs, $V_{DD} \leq BV_{DSS},$ Starting T_J = 25°C

FDD2670 Rev C1(W)

FDD2670

FDD2670 Rev C1(W)

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM BottomlessTM CoolFETTM CROSSVOLTTM DenseTrenchTM DOMETM EcoSPARKTM E²CMOSTM EnSignaTM FACTTM FACT Quiet SeriesTM FAST $^{\textcircled{(0)}}$ OPTOLFASTrTMOPTOFFRFETTMPACMAGlobalOptoisolatorTMPOPTMGTOTMPower2HiSeCTMPower7ISOPLANARTMQFETTMLittleFETTMQSTMMicroFETTMQT OptMicroPakTMQuiet SMICROWIRETMSILENT

OPTOLOGIC[™] OPTOPLANAR[™] PACMAN[™] POP[™] Power247[™] PowerTrench[®] QFET[™] QS[™] QT Optoelectronics[™] Quiet Series[™] SILENT SWITCHER[®] SMART START[™] VCX[™] STAR*POWER[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-6 SuperSOT[™]-8 SyncFET[™] TinyLogic[™] TruTranslation[™] UHC[™] UltraFET[®]

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Product Status	Definition
Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	Formative or In Design First Production Full Production