

PolarHV[™] HiPerFET IXFC 16N80P Power MOSFET ISOPLUS220[™]

(Electrically Isolated Back Surface)

N-Channel Enhancement Mode Fast Intrinsic Diode Avalanche Rated

V _{DSS}	=	800	V
I _{D25}	=	9	Α
R _{DS(on)}	≤	650	$m\Omega$
t _{rr}	≤	250	ns

Symbol	Test Conditions	Maximum F	Maximum Ratings		
V _{DSS}	$T_J = 25^{\circ} \text{ C to } 150^{\circ} \text{ C}$ $T_J = 25^{\circ} \text{ C to } 150^{\circ} \text{ C}; R_{GS} = 1 \text{ M}\Omega$	800 800	V		
V _{GS} V _{GSM}	Continuous Transient	± 30 ±40	V		
I _{D25} I _{DM}	$T_{\rm C}$ = 25° C $T_{\rm C}$ = 25° C, pulse width limited by $T_{\rm JM}$	9 48	A A		
I _{AR} E _{AR} E _{AS}	T _c = 25° C T _c = 25° C T _c = 25° C	8 30 1.5	A mJ J		
dv/dt	$I_{S} \leq I_{DM}, \text{ di/dt} \leq 100 \text{ A/}\mu\text{s}, V_{DD} \leq V_{DSS},$ $T_{J} \leq 150^{\circ}\text{ C}, R_{G} = 5 \Omega$	10	V/ns		
P_{D}	T _c = 25° C	150	W		
T _J T _{JM} T _{stg}		-55 +150 150 -55 +150	°C °C °C		
T _L T _{SOLD}	1.6 mm (0.062 in.) from case for 10 s Plastic body for 10 s	300 260	°C		
V _{ISOL}	50/60 Hz, RMS, t = 1, leads-to-tab	2500	V~		
F _c	Mounting Force	1165/2.515	N/lb		
Weight		2	<u>g</u>		

Symbol (T _J = 25° C ur	Test Conditions nless otherwise specified)		Ch Min.	aracter Typ.	istic Val Max.	
BV _{DSS}	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$		800			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 4 \text{ mA}$		3.0		5.0	V
I _{GSS}	$V_{GS} = \pm 30 \text{ V}, V_{DS} = 0 \text{ V}$				±100	nA
I _{DSS}	$V_{DS} = V_{DSS}$ $V_{GS} = 0 V$	T _J = 125° C			25 250	μ Α μ Α
R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_{D} = I_{T_{T}} \text{ (Note 1)}$ Pulse test, t \le 300 \mus, duty cy	/cle d ≤ 2 %			650	mΩ

G = Gate D = Drain S = Source

Features

- Silicon chip on Direct-Copper-Bond substrate
- High power dissipation
- Isolated mounting surface
- 2500V electrical isolation
- Low drain to tab capacitance(<35pF)
- Low R_{DS (on)} HDMOS™ process
- Rugged polysilicon gate cell structure
- Unclamped Inductive Switching (UIS) rated
- Fast intrinsic Rectifier

Applications

- DC-DC converters
- Battery chargers
- Switched-mode and resonant-mode power supplies
- DC choppers
- AC motor control

Advantages

- Easy assembly: no screws, or isolation foils required
- Space savings
- High power density
- Low collector capacitance to ground (low EMI)

Symbo	Test Con		C 25° C unless	haracte		
		(.1 -	Min.	Тур.	Max	-
g_{fs}	V _{DS} = 20 V	; $I_D = I_T$, pulse test	9	16		S
\mathbf{C}_{iss})			4600		pF
\mathbf{C}_{oss}	$V_{GS} = 0 V$	$V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$		330		pF
\mathbf{C}_{rss}	J			23		pF
t _{d(on)})			27		ns
t _r	$V_{GS} = 10$	$V_{DS} = 0.5 V_{DSS}, I_{D} = I_{T}$		32		ns
$\mathbf{t}_{d(off)}$	$R_{\rm G} = 5 \Omega$	External)		75		ns
t _f	J			29		ns
$\mathbf{Q}_{\mathrm{g(on)}}$)			71		nC
\mathbf{Q}_{gs}	$V_{GS} = 10 V$	$V_{DS} = 0.5 V_{DSS}, I_{D} = I_{T}$		21		nC
\mathbf{Q}_{gd}	J			23		nC
\mathbf{R}_{thJC}					0.82	°C/W
R _{thCS}				0.21		° C/W

Source-Drain Diode		Characteristic Values (T = 25° C unless otherwise specified)					
Symbol	Test Conditions	· J	Тур.		,		
ī .	V = 0 V			16			

- ,		 - 7		
Is	V _{GS} = 0 V		16	Α
I _{SM}	Repetitive		48	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0 \text{ V}$, Pulse test, t ≤300 µs, duty cycle d≤ 2 %		1.5	V
t _{rr}	$I_F = 16 \text{ A}, -\text{di/dt} = 100 \text{ A/}\mu\text{s}$ $V_R = 100 \text{ V}, V_{GS} = 0 \text{ V}$	7	250	ns A
Q_{PM}		0.8		μС

Note 1: Test Current $I_T = 8 A$

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated objective result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

ISOPLUS220™ (IXFC) Outline
2X b4
Note: Bottom heatsink (Pin 4) is electrically isolated from Pin 1,2, or 3.
THELES HILLIMETEDS

MYZ	INCH	łES	MILLIN	1ETERS
2114	MIN	MAX	MIN	MAX
Α	.157	.197	4.00	5.00
A2	.098	.118	2.50	3.00
Ь	.035	.051	0.90	1.30
ь2	.049	.065	1,25	1.65
ь4	.093	.100	2,35	2.55
С	.028	.039	0.70	1.00
D	.591	.630	15.00	16.00
D1	.472	.512	12.00	13.00
E	.394	.433	10.00	11.00
E1	.295	.335	7,50	8.50
е	.100	BASIC	2.55	BASIC
L	.512	.571	13.00	14.50
L1	.118	.138	3.0D	3,50
T°			42.5°	47.5

Ref: IXYS CO 0177 R0

IXYS reserves the right to change limits, test conditions, and dimensions.