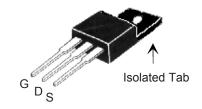
PolarHV[™] HiPerFET **Power MOSFET**

IXFP 5N50PM

(Electrically Isolated Tab)

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode



	٩D
(1	
8 4	
	Js

Symbol Test Conditions Maximum Ratings $T_{.} = 25^{\circ} \text{ C to } 150^{\circ} \text{ C}$ 500 V_{DSS} V_{DGR} $T_J = 25^{\circ} \text{ C to } 150^{\circ} \text{ C}; R_{GS} = 1 \text{ M}\Omega$ 500 V $\mathbf{V}_{\mathrm{GSS}}$ Continuous ± 30 V Transient ± 40 V_{GSM} ٧ I_{D25} $T_c = 25^{\circ}C$ 3.2 Α $T_{\rm C}$ = 25° C, pulse width limited by $T_{\rm IM}$ 10 Α I_{DM} $T_{\rm C} = 25^{\circ} \, \rm C$ \mathbf{I}_{AR} 5 Α $T_{\rm c} = 25^{\circ} {\rm C}$ 15 mJ $T_{\rm C}^{\circ} = 25^{\circ} \, \rm C$ 150 mJ dv/dt $I_{S} \leq I_{DM}$, di/dt ≤ 100 A/ μ s, $V_{DD} \leq V_{DSS}$, 10 V/ns $T_J \leq 150^{\circ} C$, $R_G = 30 \Omega$ $T_c = 25^{\circ}C$ $\mathbf{P}_{\scriptscriptstyle \mathrm{D}}$ 38 W T_{J} -55 ... +150 °С $\mathbf{T}_{\mathrm{JM}}^{\mathrm{T}}$ $^{\circ}\text{C}$ 150 $\mathsf{T}_{\underline{\mathsf{stg}}}$ -55 ... +150 $^{\circ}\text{C}$ T_L 1.6 mm (0.062 in.) from case for 10 s °C 300 T_{SOLD} Plastic body for 10 s 260 $^{\circ}C$ M, 1.13/10 Nm/lb.in. Mounting torque

OVERMOLDED TO-220 (IXTP...M) OUTLINE

V_{DSS}

500

≤ 200 ns

≤

Features

g

- Plastic overmolded tab for electrical isolation
- Fast intrinsic diode
- International standard package
- Unclamped Inductive Switching (UIS)
- Low package inductance
 - easy to drive and to protect

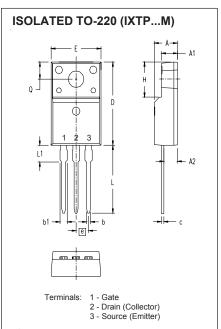
Symbol (T _J = 25° C, u		Ch Min.	istic Val Max.		
BV _{DSS}	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$		500		V
$V_{GS(th)}$	$V_{DS} = V_{GS}$, $I_D = 500 \mu A$		3.0	5.5	V
I _{GSS}	$V_{GS} = \pm 30 \ V_{DC}, \ V_{DS} = 0$			±100	nA
I _{DSS}	$V_{DS} = V_{DSS}$ $V_{GS} = 0 V$	T _J = 125° C		5 50	μA μA
R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_{D} = 2.5 \text{ A}$ Note 1			1.4	Ω

Advantages

- Easy to mount
- Space savings
- High power density

Weight

Symbo	ol	Test Conditions	$C_J = 25^{\circ} C$, unless Min.	haracte s otherw ryp.		ecified)
\mathbf{g}_{fs}		V_{DS} = 10 V; I_{D} = 2.5 A, Note 1	3.0	4.7		S
C _{iss})			620		pF
$\mathbf{C}_{\mathrm{oss}}$	}	$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MH}$	z	72		pF
\mathbf{C}_{rss}	J			6.3		pF
t _{d(on)})			28		ns
t,		$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \text{ V}_{DSS}, I_{D} =$	5 A	28		ns
$\mathbf{t}_{d(off)}$		$R_{_{G}}$ = 30 Ω (External)		65		ns
t _f)			26		ns
$Q_{g(on)}$)			12.6		nC
\mathbf{Q}_{gs}	}	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \text{ V}_{DSS}, I_{D} = 2$	2.5 A	4.3		nC
\mathbf{Q}_{gd}	J			5.0		nC
R _{thJC}					3.3	°C/W


Source-Drain Die	ode
------------------	-----

Characteristic Values (T₁ = 25° C unless otherwise specified)

Symbol	Test Conditions	Min.	Тур.	Max.	
I _s	$V_{GS} = 0 V$			5	Α
I _{SM}	Repetitive			15	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0$ V, Note 1			1.5	V
t _{rr} Q _{RM} I _{RM}	$I_F = 5 \text{ A}$, -di/dt = 100 A/ μ s, $V_R = 100 \text{ V}$, $V_{GS} = 0 \text{ V}$		0.15 1	200	ns μC A

Notes:

1) Pulse test, t ≤300 µs, duty cycle d≤ 2 %

MYZ	INCHES		MILLIMETERS		
2114	MIN	MAX	MIN	MAX	
Α	.177	.193	4.50	4.90	
A1	.092	.108	2.34	2.74	
A2	.101	.117	2.56	2.96	
b	.028	.035	0.70	0.90	
b1	.050	.058	1.27	1.47	
С	.018	.024	0.45	0.60	
D	.617	.633	15.67	16.07	
E	.392	.408	9.96	10.36	
е	.100 BSC		2.54 BSC		
Н	.255	.271	6.48	6.88	
L	.499	.523	12.68	13.28	
L1	.119	.135	3.03	3.43	
ØΡ	.121	.129	3.08	3.28	
Q	.126	.134	3.20	3.40	

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from data gathered during objective characterizations of preliminary engineering lots; but also may yet contain some information supplied during a pre-production design evaluation. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

IXYS reserves the right to change limits, test conditions, and dimensions.

IXYS MOSFETs and IGBTs are covered by 4,835,592 4,931,844 5,049,961 5,237,481 6,162,665 6,404,065 B1 6,683,344 6,727,585 one or moreof the following U.S. patents: 5,017,508 6,710,405B2 4,850,072 5,063,307 5,381,025 6,259,123 B1 6,534,343 6,759,692 4,881,106 5,034,796 5,187,117 5,486,715 6,306,728 B1 6,583,505 6,710,463 6,771,478 B2