PD-95291

International **ICR** Rectifier

IRF7807VD2PbF

- Co-Pack N-channel HEXFET[®] Power MOSFET and Schottky Diode
- · Ideal for Synchronous Rectifiers in DC-DC Converters Up to 5A Output
- Low Conduction Losses
- Low Switching Losses
- Low Vf Schottky Rectifier

Absolute Maximum Ratings

• Lead-Free

Description

The FETKY[™] family of Co-Pack HEXFET[®]MOSFETs and Schottky diodes offers the designer an innovative, board space saving solution for switching regulator and power management applications. HEXFET power MOSFETs utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. Combining this technology with International Rectifier's low forward drop Schottky rectifiers results in an extremely efficient device suitable for use in a wide variety of portable electronics applications.

The SO-8 has been modified through a customized leadframe for enhanced thermal characteristics. The SO-8 package is designed for vapor phase, infrared or wave soldering techniques.

A/S ITT нпк/р A/S ____ III K/D A/S 🗆 ITT K/D G III <u>тт</u> к/р Top View **SO-8**

FETKY[™] MOSFET / SCHOTTKY DIODE

DEVICE CHARACTERISTICS^⑤

	IRF7807VD2					
$R_{DS(on)}$	17mΩ					
Q _G	9.5nC					
Q _{sw}	3.4nC					
$Q_{_{\mathrm{OSS}}}$	12nC					

Parameter		Symbol	Max.	Units	
Drain-Source Voltage		V _{DS}	30	V	
Gate-Source Voltage		V _{GS}	±20	V	
Continuous Drain or Source	25°C	I _D	8.3		
Current ($V_{GS} \ge 4.5V$) 70°C			6.6	A	
Pulsed Drain Current ^①		I _{DM}	66		
Power Dissipation3	25°C	P _D	2.5	W	
	70°C		1.6	vv	
Schottky and Body Diode	25°C	I _F (AV)	3.7	A	
Average ForwardCurrent ④	70°C		2.3		
Junction & Storage Temperature Range		T_,T _{STG}	-55 to 150	°C	

Thermal Resistance

Parameter		Max.	Units
Maximum Junction-to-Ambient3	R _{eja}	50	°C/W
Maximum Junction-to-Lead	R _{eJL}	20	°C/W
www.irf.com			1

International **TOR** Rectifier

Electrical Characteristics

Parameter		Min	Тур	Max	Units	Conditions
Drain-to-Source Breakdown Voltage	BV _{DSS}	30	-	-	V	$V_{_{\rm GS}} = 0V, I_{_{\rm D}} = 250 \mu A$
Static Drain-Source on Resistance	R _{DS(on)}		17	25	mΩ	$V_{GS} = 4.5V, I_{D} = 7.0A^{2}$
Gate Threshold Voltage	V _{GS(th)}	1.0			V	$V_{\rm DS} = V_{\rm GS}, I_{\rm D} = 250 \mu A$
Drain-Source Leakage	I _{DSS}			50	μA	$V_{\rm DS} = 24 V, V_{\rm GS} = 0$
Current				6.0	mA	$V_{DS} = 24V, V_{GS} = 0,$
						Tj = 100°C
Gate-Source Leakage Current*	I _{GSS}			±100	nA	$V_{GS} = \pm 20V$
Total Gate Charge*	Q _G		9.5	14		V _{GS} =4.5V, I _D =7.0A
Pre-Vth Gate-Source Charge	Q _{GS1}		2.3			V _{DS} = 16V
Post-Vth Gate-Source Charge	Q _{GS2}		1.0		nC	
Gate to Drain Charge	Q _{GD}		2.4			
Switch Chg(Q _{gs2} + Q _{gd})	Q _{sw}		3.4	5.2		
Output Charge*	Q _{oss}		12	16.8		V _{DS} = 16V, V _{GS} = 0
Gate Resistance	R _G		2.0		Ω	
Turn-on Delay Time	t _{d (on)}		6.3			$V_{DD} = 16V, I_{D} = 7.0A$
Rise Time	t,		1.2		ns	$V_{gg} = 5V, R_g = 2\Omega$
Turn-off Delay Time	t _{d (off)}		11			Resistive Load
Fall Time	t		2.2			

Schottky Diode & Body Diode Ratings and Characteristics

Parameter		Min	Тур	Max	Units	Conditions
Diode Forward Voltage	V _{SD}			0.54	V	$T_1 = 25^{\circ}C, I_s = 3.0A, V_{GS} = 0V^{\circ}$
				0.43	Ī	$T_{j} = 125^{\circ}C, I_{s} = 3.0A, V_{GS} = 0V^{\circ}$
Reverse Recovery Time	trr		36		ns	$T_{j} = 25^{\circ}C, I_{s} = 7.0A, V_{DS} = 16V$
Reverse Recovery Charge	Qrr		41		nC	di/dt = 100A/µs
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by L_s+L_D)				

International

Power MOSFET Selection for DC/DC Converters

Control FET

Special attention has been given to the power losses in the switching elements of the circuit - Q1 and Q2. Power losses in the high side switch Q1, also called the Control FET, are impacted by the $R_{ds(on)}$ of the MOSFET, but these conduction losses are only about one half of the total losses.

Power losses in the control switch Q1 are given by;

$$P_{\textit{loss}} = P_{\textit{conduction}} + P_{\textit{switching}} + P_{\textit{drive}} + P_{\textit{output}}$$

This can be expanded and approximated by;

$$P_{loss} = \left(I_{rms}^{2} \times R_{ds(on)}\right) + \left(I \times \frac{Q_{gd}}{i_{g}} \times V_{in} \times f\right) + \left(I \times \frac{Q_{gs2}}{i_{g}} \times V_{in} \times f\right) + \left(Q_{g} \times V_{g} \times f\right) + \left(\frac{Q_{oss}}{2} \times V_{in} \times f\right)$$

This simplified loss equation includes the terms Q_{gs2} and Q_{oss} which are new to Power MOSFET data sheets.

 Q_{gs2} is a sub element of traditional gate-source charge that is included in all MOSFET data sheets. The importance of splitting this gate-source charge into two sub elements, Q_{gs1} and Q_{gs2} , can be seen from Fig 1.

 Q_{gs2} indicates the charge that must be supplied by the gate driver between the time that the threshold voltage has been reached (t1) and the time the drain current rises to I_{dmax} (t2) at which time the drain voltage begins to change. Minimizing Q_{gs2} is a critical factor in reducing switching losses in Q1.

 Q_{oss} is the charge that must be supplied to the output capacitance of the MOSFET during every switching cycle. Figure 2 shows how Q_{oss} is formed by the parallel combination of the voltage dependant (nonlinear) capacitance's C_{ds} and C_{dg} when multiplied by the power supply input buss voltage.

www.irf.com

IRF7807VD2PbF

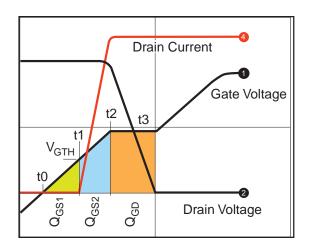


Figure 1: Typical MOSFET switching waveform

Synchronous FET

The power loss equation for Q2 is approximated by;

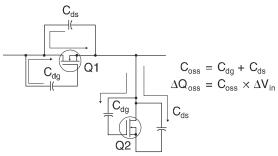
$$P_{loss} = P_{conduction} + P_{drive} + P_{output}^{*}$$

$$P_{loss} = \left(I_{rms}^{2} \times R_{ds(on)}\right)$$

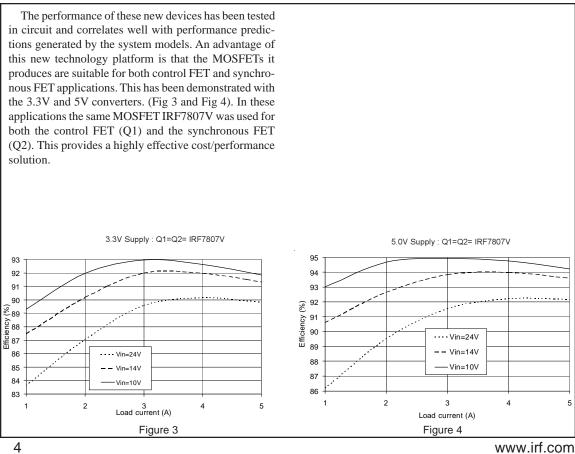
$$+ \left(Q_{g} \times V_{g} \times f\right)$$

$$+ \left(\frac{Q_{oss}}{2} \times V_{in} \times f\right) + \left(Q_{rr} \times V_{in} \times f\right)$$

*dissipated primarily in Q1.

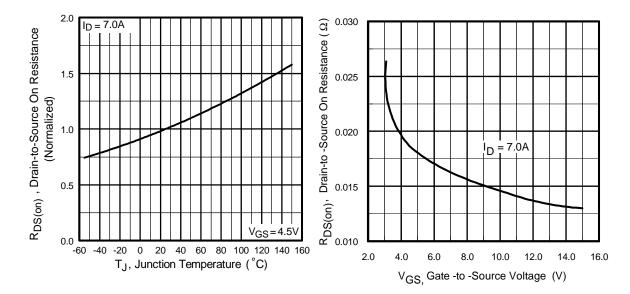

For the synchronous MOSFET Q2, $R_{ds(on)}$ is an important characteristic; however, once again the importance of gate charge must not be overlooked since it impacts three critical areas. Under light load the MOSFET must still be turned on and off by the control IC so the gate drive losses become much more significant. Secondly, the output charge Q_{oss} and reverse recovery charge Q_{rr} both generate losses that are transfered to Q1 and increase the dissipation in that device. Thirdly, gate charge will impact the MOSFETs' susceptibility to Cdv/dt turn on.

The drain of Q2 is connected to the switching node of the converter and therefore sees transitions between ground and V_{in} . As Q1 turns on and off there is a rate of change of drain voltage dV/dt which is capacitively coupled to the gate of Q2 and can induce a voltage spike on the gate that is sufficient to turn


International **IGR** Rectifier

the MOSFET on, resulting in shoot-through current . The ratio of Q_{gd}/Q_{gs1} must be minimized to reduce the potential for Cdv/dt turn on.

Spice model for IRF7807V can be downloaded in machine readable format at www.irf.com.



Downloaded from Elcodis.com electronic components distributor

Typical Mobile PC Application



Fig 7. On-Resistance Vs. Gate Voltage

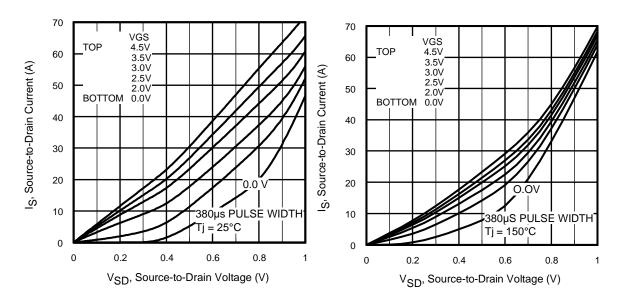


Fig 7. Typical Reverse Output Characteristics

Fig 8. Typical Reverse Output Characteristics

www.irf.com

International

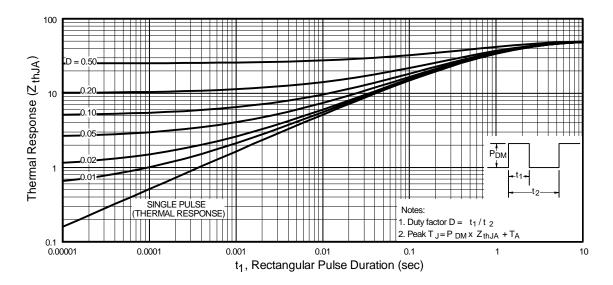


Figure 9. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

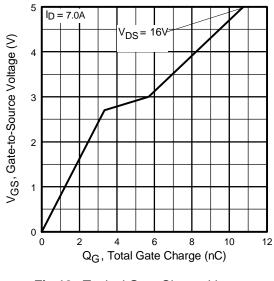
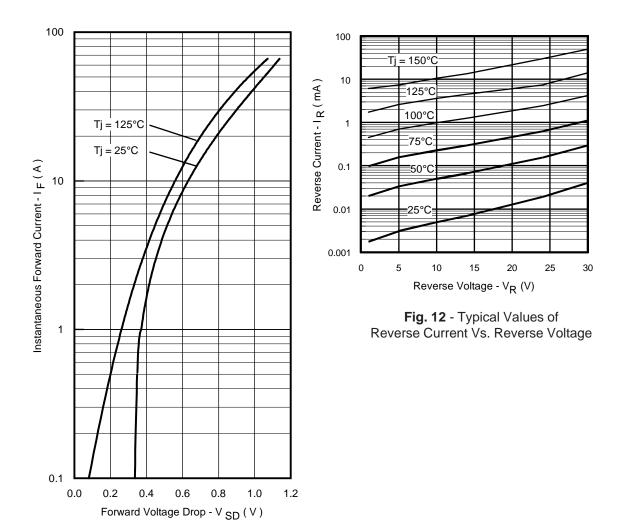
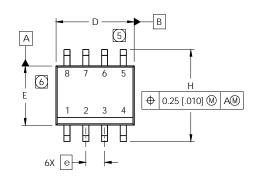



Fig 10. Typical Gate Charge Vs. Gate-to-Source Voltage



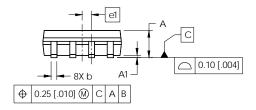
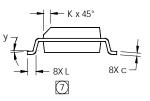

MOSFET, Body Diode & Schottky Diode Characteristics

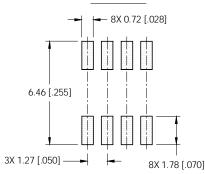
Fig. 11 - Typical Forward Voltage Drop Characteristics

SO-8 (Fetky) Package Outline

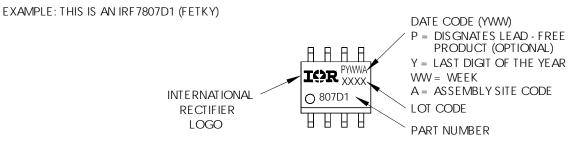
Dimensions are shown in millimeters (inches)


1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.

 DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
 OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA
 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].


 (6) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
 (7) DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO

2. CONTROLLING DIMENSION: MILLIMETER

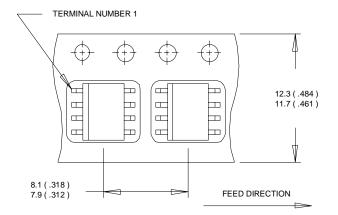

DIM	INC	HES	MILLIMETERS		
DIIVI	MIN	MAX	MIN	MAX	
Α	.0532	.0688	1.35	1.75	
A1	.0040	.0098	0.10	0.25	
b	.013	.020	0.33	0.51	
С	.0075	.0098	0.19	0.25	
D	.189	.1968	4.80	5.00	
E	.1497	.1574	3.80	4.00	
е	.050 B	ASIC	1.27 BASIC		
e1	.025 B	ASIC	0.635 BASIC		
Н	.2284	.2440	5.80	6.20	
К	.0099	.0196	0.25	0.50	
L	.016	.050	0.40	1.27	
у	0°	8°	0°	8°	

SO-8 (Fetky) Part Marking Information

8

NOTES:

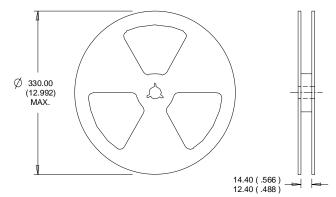
ASUBSTRATE.


International **tor** Rectifier

SO-8 (Fetky) Tape and Reel

International

TOR Rectifier


Dimensions are shown in millimeters (inches)

NOTES:

CONTROLLING DIMENSION : MILLIMETER.
 ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).

3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualifications Standards can be found on IR's Web site.

> International **ICR** Rectifier

> > 9

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.10/04

www.irf.com

Downloaded from Elcodis.com electronic components distributor