

MAX97236 Evaluation Kit **Evaluates: MAX97236**

General Description

Features

The MAX97236 evaluation kit (EV kit) is a fully assembled and tested surface-mount PCB that evaluates the MAX97236 IC, which is an audio amplifier with automatic jack detection and configuration, volume control, and microphone preamplifier. To facilitate evaluation, the EV kit includes input RCA jack connectors (J2, J3), a 5-pin stereo headphone jack connector (J1), and an external clock input BNC jack connector (J4).

The device's I²C control bus is interfaced to the on-board MAXQ2000 microcontroller, allowing for evaluation with the EV kit software, which can be downloaded from www.maxim-ic.com/evkitsoftware.

- USB Powered
- ♦ I²C Interface
- **♦ RCA Input Connectors**
- ♦ 3.5mm Output Connector
- ♦ Windows XP®-, Windows Vista®-, and Windows® 7-Compatible Software
- **♦ Surface-Mount Components**
- ♦ Proven PCB Layout
- ◆ Fully Assembled and Tested

Ordering Information appears at end of data sheet.

Component List

DESIGNATION	QTY	DESCRIPTION
C1, C28	2	10µF ±10%, 6.3V X5R ceramic capacitors (0603) Murata GRM188R0J106M
C2, C26, C27, C29–C32, C33, C37	9	0.1µF ±10%, 6.3V X5R ceramic capacitors (0402) Murata GRM155R60J104K
C3, C5, C6, C11, C14, C18, C20, C21, C23	9	1μF ±10%, 10V X5R ceramic capacitors (0402) Murata GRM155R61A105K
C4, C7, C8, C9	4	1μF ±10%, 16V X7R ceramic capacitors (0603) Murata GRM188R71C105K
C12, C13, C39, C40	0	Not installed, ceramic capacitors (0402)
C15, C16	2	2.2µF ±20%, 6.3V X5R ceramic capacitors (0603) Murata GRM188R60J225M
C17, C19, C22, C38	4	0.01µF ±10%, 25V X7R ceramic capacitors (0402) Murata GRM155R71E103K

DESIGNATION	QTY	DESCRIPTION
C24, C25	2	8pF ±0.5pF, 50V C0G ceramic capacitors (0402) Murata GRM1555C1H8R0D Taiyo Yuden UMK105CH080DV
C34	1	33000pF ±10%, 16V X7R ceramic capacitor (0603) Murata GRM188R71C333K
C35, C36	2	18pF ±5%, 50V C0G ceramic capacitors (0603) Murata GRM1885C1H180J TDK C1608C0G1H180J
D1	1	Yellow LED (0603)
D2	1	Red LED (0603)
FB1, FB2, FB4, FB5	4	0Ω resistors (0402)
FB3	1	0Ω resistor (0603)
J1	1	3.5mm stereo headphone jack connector
J2	1	Phono jack connector, white (side-entry PCB mount)

Windows, Windows XP, and Windows Vista are registered trademarks of Microsoft Corp.

Maxim Integrated Products 1

MAX97236 Evaluation Kit Evaluates: MAX97236

Component List (continued)

DE010114E1011	071	250205500
DESIGNATION	QTY	DESCRIPTION
J3	1	Phono jack connector, red (side-entry PCB mount)
J4	1	50Ω BNC female jack connector (top mount)
JU1–JU7	7	2-pin headers, 0.1in centers
P1	1	Mini-USB type-B connector
R1	1	0Ω resistor (0402)
R2	0	Not installed, resistor (0603)
R3, R4, R10	3	1.5kΩ ±5% resistors (0402)
R5	1	10kΩ ±5% resistor (0402)
R6	1	2.2kΩ ±5% resistor (0402)
R7	1	470Ω ±5% resistor (0603)
R8, R9	2	27Ω ±5% resistors (0603)
R11, R12	2	220Ω ±5% resistors (0603)
R13, R14	0	Not installed, resistors (0603)
R15	1	10kΩ ±5% resistor (0603)
RING1, RING2, SLEEVE, TIP	4	Multipurpose test points
U1	1	DirectDrive® headphone amplifier (25 WLP) Maxim MAX97236EWA+
U2	1	1.8V, 300mA LDO linear regulator (5 SOT23) Maxim MAX8887EZK18+

DESIGNATION	QTY	DESCRIPTION
U3	1	3.3V ultra-low-noise LDO linear regulator (5 SC70) Maxim MAX8510EXK33+
U4	1	2.5V ultra-low-noise LDO linear regulator (5 SC70) Maxim MAX8510EXK25+
U5	1	Low-power LCD microcontroller (56 TQFN) Maxim MAXQ2000-RBX+
U6	1	EEPROM (8 SO) Atmel AT93C46EN-SH-B
U7	1	USB-to-UART connector (32 QFN) FTDI FT232BQ
Y1	1	6MHz crystal
Y2	1	16MHz crystal oscillator (3.2mm x 2.5mm)
Y3	1	19.2MHz, 3.3V CMOS oscillator (3.2mm x 2.5mm)
_	7	Shunts (JU1-JU7)
_	1	PCB: MAX97236 EVALUATION KIT

Component Suppliers

SUPPLIER	PHONE	WEBSITE
Murata Electronics North America, Inc.	770-436-1300	www.murata-northamerica.com
Taiyo Yuden	800-348-2496	www.t-yuden.com
TDK Corp.	847-803-6100	www.component.tdk.com

Note: Indicate that you are using the MAX97236 when contacting these component suppliers.

MAX97236 EV Kit Files

FILE	DESCRIPTION
INSTALL.EXE	Installs the EV kit files on your computer
MAX97236.EXE	Application program
CDM20600.EXE	Installs the USB device driver
UNINSTALL.EXE	Uninstalls the EV kit software
USB_Driver_Help_200.PDF	USB driver installation help file

DirectDrive is a registered trademark of Maxim Integrated Products, Inc.

Maxim Integrated Products 2

Evaluates: MAX97236

Quick Start

Required Equipment

- MAX97236 EV kit (USB cable included)
- Audio source with RCA output
- Stereo headphones
- User-supplied Windows XP, Windows Vista, or Windows 7 PC with spare USB port

Note: In the following sections, software-related items are identified by bolding. Text in **bold** refers to items directly from the EV kit software. Text in **bold and underlined** refers to items from the Windows operating system.

Procedure

The EV kit is fully assembled and tested. Follow the steps below to verify board operation:

- 1) Visit www.maxim-ic.com/evkitsoftware to download the latest version of the EV kit software, 97236Rxx. ZIP. Save the EV kit software to a temporary folder and uncompress the ZIP file.
- 2) Install the EV kit software and USB driver on your computer by running the INSTALL.EXE program inside the temporary folder. The program files are copied to your PC and icons are created in the Windows Start I Programs menu. During software installation, some versions of Windows may show a warning message indicating that this software is from an unknown publisher. This is not an error condition and it is safe to proceed with installation. Administrator privileges are required to install the USB device driver on Windows.
- 3) Verify that jumpers JU1-JU7 are configured with shunts installed.
- 4) Connect the USB cable from the PC to the EV kit board. A Windows message appears when connecting the EV kit board to the PC for the first time. Each version of Windows has a slightly different message. If you see a Windows message stating ready to use, then proceed to the next step. Otherwise, open the USB_Driver_Help_200.PDF document in the Windows Start I Programs menu to verify that the USB driver was installed successfully.
- 5) Start the EV kit software by opening its icon in the Windows Start I Programs menu. The EV kit software main window appears, as shown in Figure 1.
- 6) Press the Connect button on the EV kit software and verify that the status bar at the bottom of the window displays EV kit: Connected, Device Address: 0x80, and Vendor ID: 0x09.
- Select the Controls tab and then the Jack Detect subtab.

- 8) Select the Auto mode enabled (set SHDN low) radio box from the Automatic Configuration Control group box.
- 9) Enable the device by pressing the **Power** button.
- 10) Connect the headphones to the 3.5mm headphone jack connector (J1).
- 11) Press the Read All button and verify that the image in the Jack Configuration group box displays the correct text and image.
- 12) Connect the audio source to the J2 (IN_L) and J3 (IN_R) RCA connectors.
- 13) Enable the audio source.
- 14) Select the Audio tab and uncheck the Mute checkbox in the Audio Control group box.
- 15) Drag the slider to midlevel (approximately -30dB).
- 16) Verify that the input audio can be heard through the connected headphones.
- 17) The EV kit is now ready for further evaluation.

Detailed Description of Software

The MAX97236 EV kit software is divided into two tabs: Controls and Registers. The Controls tab provides several subtabs that provide controls for configuring the device. The Registers tab provides a map of the device registers, as well as configuration control of each register bit.

The software also includes a Status panel (see the Status Panel section), six command buttons, a menu bar, and a status bar. The status bar is used to report EV kit connectivity, the device's address (e.g., 0x80 for the MAX97236A), the device's ID, and communication activity. The functionality of the command buttons is provided in Table 1 and the menu bar items are shown in Table 2.

The controls for the device registers are discussed in subsequent sections. When evaluating the EV kit hardware and software, both the MAX97236 IC data sheet and EV kit data sheet should be referenced.

Menu Bar

The software's menu bar provides four drop-down menus: File, Options, Tools, and Help. Their associated menu items are listed and detailed in Table 2.

Status Panel

The Status panel reports the state of each active bit in the three status registers. More details for each bit are provided on the Controls I Status/Masks subtab. The jack detection results, as reported by the status registers, are also reported on the Controls I Jack Detect subtab by an image that represents the type of jack connected to the 3.5mm stereo headphone jack connector (J1).

Evaluates: MAX97236

Table 1. Command Buttons

BUTTON	FUNCTIONALITY
Read All	Reads all device registers and updates all tabs to reflect the state of the device registers.
Write All	Writes all the hex values (0x??) shown on the Registers tab to the associated register of the IC.
Device Reset	Resets the device to its power-on-reset (POR) state.
Connect	Attempts to establish a connection to the EV kit by first establishing a connection with the EV kit's onboard microcontroller (MAXQ2000) and then with the device.
Jack Reset	Toggles the RESET bit of register 0x1D (Enable1). Press RESET twice to reset jack detection.
Power	Toggles the SHDN bit of register 0x1D (Enable1). When enabled, the button's image turns blue.

Table 2. Menu Items

MENU ITEMS	DESCRIPTION	
File		
I Save Configuration	Course/loods a 07006 configuration file (see the Course/Lood Cottings continue)	
l Load Configuration	Saves/loads a .97236 configuration file (see the Save/Load Settings section).	
Exit	Closes the software.	
Options		
l Auto Connect	Enables continuous device detection.	
Tools		
l Interface (Advanced User)	Opens the Advanced User Interface window (see the <i>Advanced User Interface</i> section).	
I IRQ Auto Read Enable	Enables continuous reading of the $\overline{\text{IRQ}}$ pin.	
l Continuous Read Enable (Status1)	Enables continuous reading of the Status1 register (0x00).	
l Continuous Read Enable (All Registers)	Enables continuous reading of all registers.	
l Read Interval	Sets the read interval when continuous reading is enabled.	
Help		
l Help File F1	Instructions on where to find the latest EV kit data sheet.	
l About	Software information.	

Controls Tab

The **Controls** tab sheet (Figure 1) includes four subtabs: Status/Masks, Audio, Keyscan, and Jack Detect. These subtabs include controls for writing to and reading from the active device registers (0x00 to 0x23).

Status/Masks Subtab

The Status/Masks subtab sheet (Figure 1) provides details about the state of the status registers (Status 1, Status2, and Status3). The Status 1 (0x00), Status 2 (0x01), and Status 3 (0x02) group boxes display text descriptions that correspond to the state of each status bit. Adjacent to the Status 1 (0x00) and Status 2 (0x01) group boxes are the IRQ Mask 1 (0x04) and IRQ Mask 2 (0x05) group boxes, which list the interrupt enables for each of the bits in these two registers.

The hardware interrupts are enabled/disabled by checking/unchecking the associated checkbox in the IRQ Mask_ group boxes. For a status register flag to be reported on the device's open-drain IRQ pin, the corresponding interrupt enable bit must be set; otherwise, the flag is only reported as a software interrupt in the Status group boxes and on the Status panel.

The IRQ Monitoring group box provides controls for monitoring the device's IRQ pin. The Delay edit box specifies the amount of time between IRQ reads and the Auto Read Enable checkbox enables/disables continuous reading of the IRQ pin. When an interrupt occurs, and if the Save to file checkbox is checked, the software saves the contents of the device registers to a file. This provides some insight into the device's state during the last hardware interrupt.

Audio Subtab

The Audio subtab sheet (Figure 2) provides controls for the audio and microphone settings. The Audio Control group box is used to control the left and right audio channels. A description of each control is provided in Table 3. The microphone settings are controlled from the **Microphone** group box.

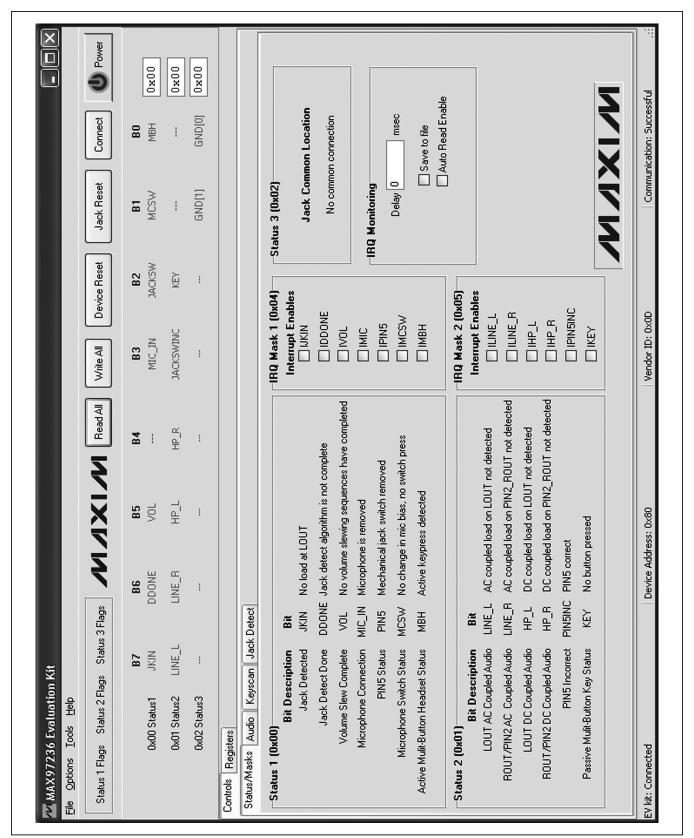


Figure 1. Status/Masks Subtab

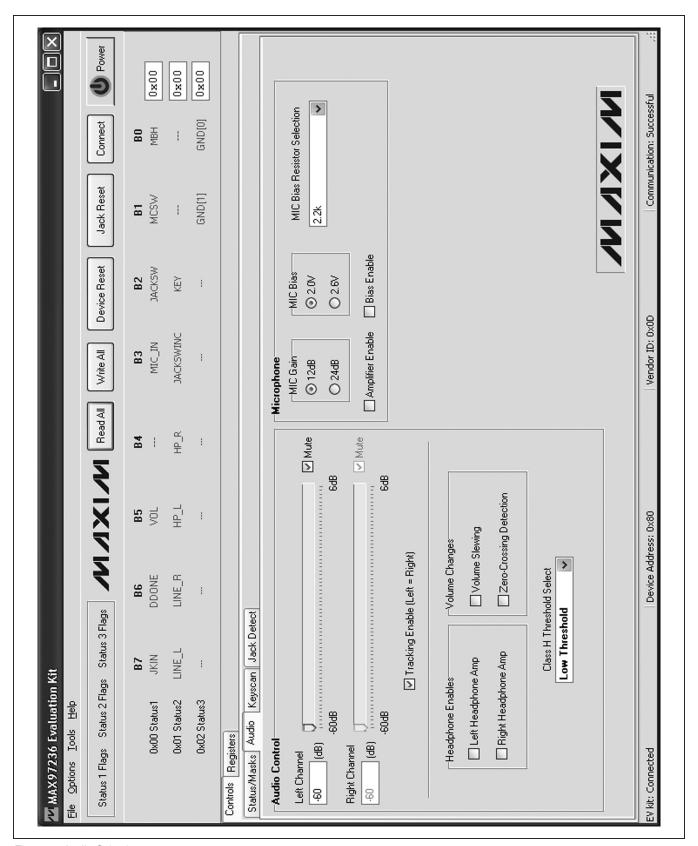


Figure 2. Audio Subtab

Evaluates: MAX97236

Keyscan Subtab

The **Keyscan** subtab sheet (Figure 3) provides controls for configuring the clock dividers, keyscan debounce, keyscan delay, and reading the passive headset data. Details for each configurable control and status label are provided in Table 4.

Jack Detect Subtab

The Jack Detect subtab sheet (Figure 4) is used to configure Ramp Slew Rate, Pulse Control, Load State Forcing, and Automatic Configuration Control modes. This tab also displays an image in the Jack **Configuration** group box that represents the type of jack detected at connector J1. Refer to the MAX97236 IC data

sheet for additional load state forcing and jack detection/ configuration details.

The Automatic Configuration Control group box configures the method in which the device's functional blocks are enabled. When one of the Auto mode radio buttons is selected, the device's functional blocks are automatically enabled based on the type of load connected to the 3.5mm stereo headphone jack connector (J1). When auto mode is disabled, the functional blocks must be enabled by configuring registers 0x1D and 0x1E. Whether enabled or disabled, the jack detection algorithm must be completed before the functional blocks can be enabled. Refer to the MAX97236 IC data sheet for additional details.

Table 3. Audio Controls

CONTROL	DESCRIPTION
Left/Right Channel edit boxes/sliders	Adjusts the left/right output-volume level from -60dB to 6dB (refer to the MAX97236 IC data sheet for step sizes).
Mute checkbox	Mutes the left/right channel.
Tracking Enable (Left = Right) checkbox	Disables the right-channel controls. The right-channel volume tracks the left-channel volume.
Left/Right Headphone Amp checkboxes	Enables the left- and right-channel output.
Volume Slewing checkbox	Enables volume slewing.
Zero-Crossing Detection checkbox	Enables zero-crossing detection.
Class H Threshold Select drop-down list	Sets the switching threshold of the Class H amplifier.

Table 4. Keyscan Controls

CONTROL	DESCRIPTION	
Clock Divider edit boxes	Input one of the three settings and the software calculates the other two values.	
(EXTCLK) edit box	EXTCLK = 1MHz to 26MHz.	
(16-bit) edit box	N = EXTCLK/2kHz.	
(8-bit) edit box	N = EXTCLK/200kHz.	
Configure button	Press to write the 16-bit and 8-bit values to their respective registers.	
Keyscan Debounce edit boxes	Sets the debounce time from 1ms (0x00) to 256ms (0xFF) in 1ms increments.	
Keyscan Delay edit boxes	Sets the delay time from 4ms (0x00) to 1024ms (0xFF) in 4ms increments.	
Passive Multi-Button Headset		
Read button	Reads the Keyscan Data register (0x17) and displays the result in the Data Word Received edit box.	
KEY STATUS label	Turns red when bit 2 (KEY) of the Status2 register is set. Turns black when bit 2 (KEY) of the Status2 register is cleared.	
Keyscan ADC enable checkbox	Enables/disables keyscan ADC.	
KEY EVENT label	'PRESS' is displayed below this label when bit 7 (PRESS) of register 0x17 is set. 'RELEASE' is displayed below this label when bit 7 (PRESS) of register 0x17 is cleared.	

Evaluates: MAX97236

Registers Tab

The **Registers** tab sheet (Figure 5) contains a register map of the device. The tab is organized from left to right with the register names, bit names, and edit boxes. The bit names are used to display the current state of each bit (bold text = 1). In addition, a register's bits can be individually toggled by single-clicking on the bit's name.

The edit boxes are used to display a register's current state and are updated after a read all, bit click, or configuration change is made on the Controls tab. The edit boxes can also be used to configure the device registers. This is accomplished by entering the desired 8-bit hex value (0x??) into the edit box and then pressing the Enter key.

Save/Load Settings

Register configurations can be saved/loaded by selecting the Save Settings or Load Settings menu item from the File menu. The save operation saves the state of the device registers to a configuration file. The load operation configures the device registers based on the data contained in the configuration file.

Advanced User Interface

The Advanced User Interface window (Figure 6) can also be used to communicate with the device. Use the Tools I Interface (Advanced Users) F1 menu item to open the interface window, which can be used for I2C communication and to monitor the MAXQ2000 generalpurpose input/output (GPIO) that the EV kit utilizes. This window consists of three main tabs: Connection, Bit Set/Clear, and 2-wire interface. The interface utility only accepts and outputs hexadecimal number format.

Connection Tab

The **Connection** tab sheet is used to establish a connection with the MAXQ2000 interface included on the EV kit.

Bit Set/Clear Tab

The Bit Set/Clear tab sheet provides control of the MAXQ2000's available GPIO pins. The only GPIO pin utilized by the EV kit is listed in Table 5.

2-Wire Interface

The 2-wire interface | General Commands subtab sheet (Figure 7) allows general-purpose 2-wire commands to be sent using the Command drop-down list and the **Execute** button. The read/write commands to use with the device are SMBusWriteByte and SMBusReadByte. The SMBusWriteByte transmits the device address. command, and one byte of data. The SMBusReadByte transmits the device address, a command, and then retransmits the device address and reads one byte of data.

The device address used by the commands is the value displayed in the Target Device Address drop-down list, generated by pressing the Hunt for active listeners button. This button scans the entire 2-wire address space, reporting each address that is acknowledged. For both a read and write operation, the Command Byte is the register address. The data to write to the target device should be entered in the Data Out edit box, with the data read reported in the Data In field.

The SCL frequency can also be configured by selecting the Low Level commands subtab and using the speed buttons and/or edit fields to set the operating frequency.

Table 5. GPIO Functionality

MAXQ2000 GPIO	NET NAME	I/O	FUNCTIONALITY
K1	ĪRQ	Input	Used to monitor the device's IRQ pin.

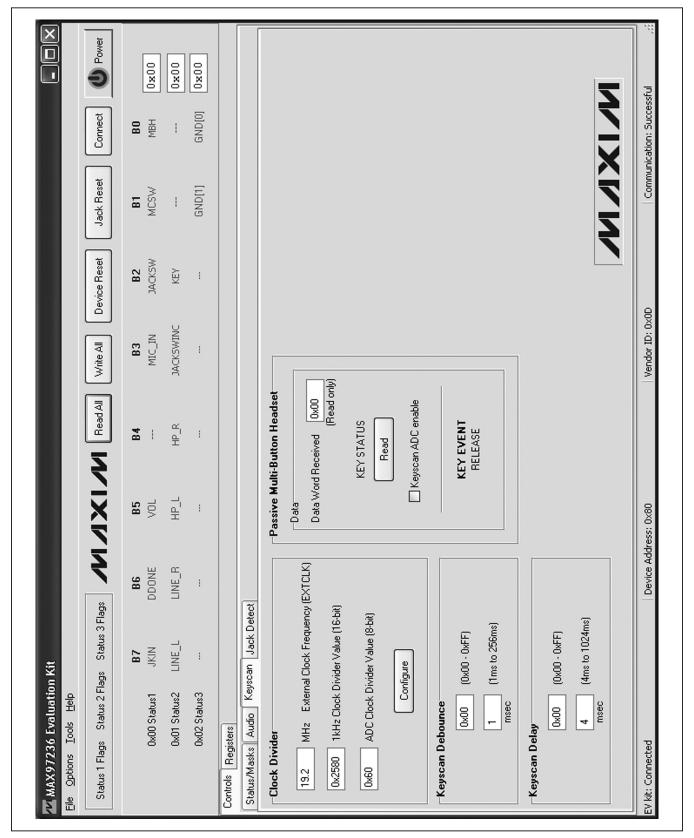


Figure 3. Keyscan Subtab

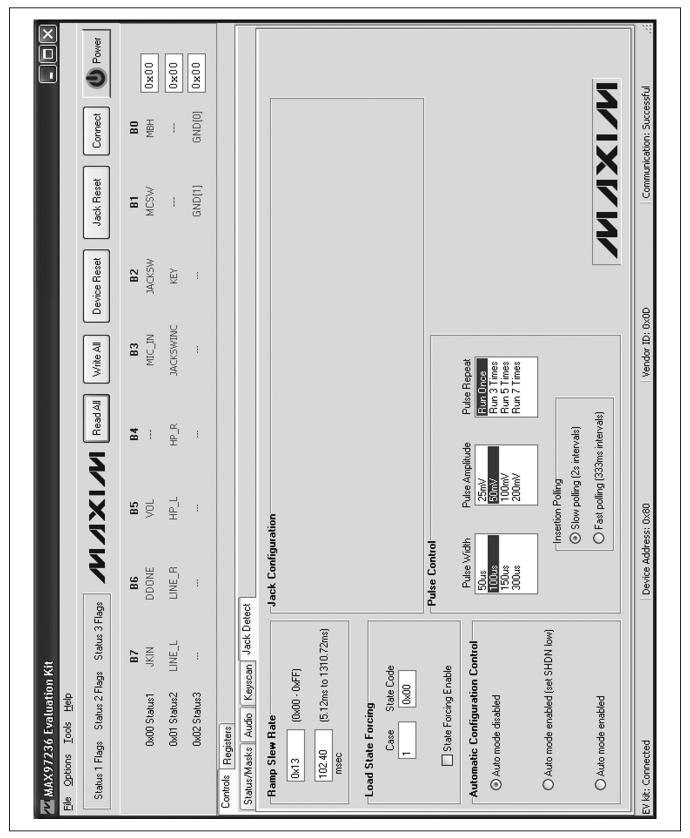


Figure 4. Jack Detect Subtab

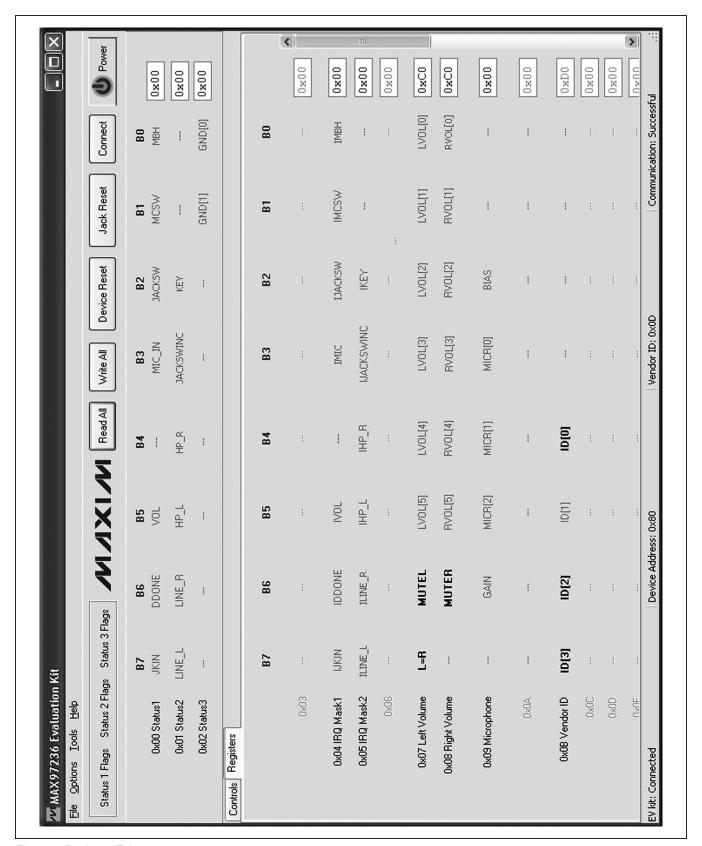


Figure 5. Registers Tab

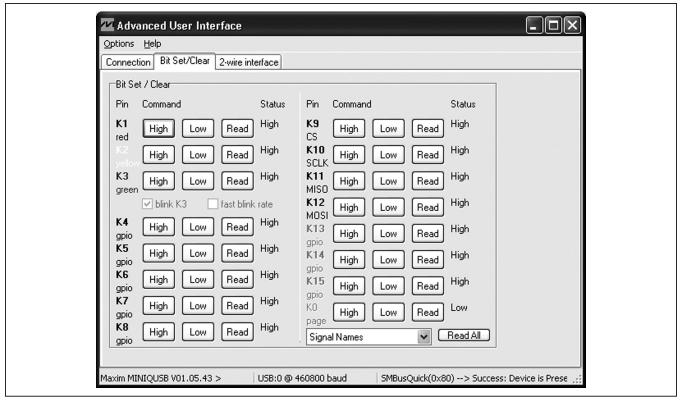


Figure 6. Advanced User Interface (Bit Set/Clear Tab)

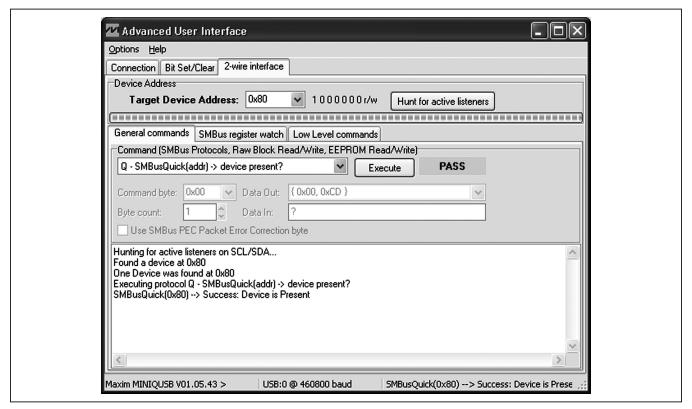


Figure 7. Advanced User Interface (2-Wire Interface I General Commands Subtab)

Evaluates: MAX97236

Detailed Description of Hardware

The MAX97236 EV kit evaluates the MAX97236 IC, which is an audio amplifier with automatic jack detection and configuration, volume control, and microphone preamplifier. The EV kit includes input RCA jack connectors (J2, J3), a 5-pin stereo headphone jack connector (J1), and an external clock input BNC jack connector (J4). The EV kit also includes USB powered low-dropout (LDO) linear regulators (U2, U3, U4) that allow the EV kit to be evaluated without any external supplies. These LDO linear regulators provide the +1.8V and +3.3V voltages required by the device and support circuitry.

The EV kit also includes a MAXQ2000 microcontroller (U5) that interfaces with the device's I2C control bus and allows the EV kit to be evaluated with the EV kit software. See the Detailed Description of Software section.

On-Board LDO Linear Regulators

The EV kit includes on-board LDO linear regulators (U2, U3), allowing the EV kit to operate without external power supplies. These LDO linear regulators provide power to the device's power-supply pins (VDD and MICVDD) and to the on-board 19.2MHz oscillator (Y3). The LDO linear regulator outputs can be isolated from the power-supply pins through jumpers JU1 and JU2, respectively.

A third LDO linear regulator (U4) provides power to the MAXQ2000 circuit. All the LDO linear regulators are powered by the USB bus voltage (+5V) from the P1 mini-USB connector.

Serial-Interface Clock Input (EXTCLK)

The EV kit provides two serial-interface clock input (EXTCLK) options. The clock input can be driven by the on-board 19.2MHz oscillator (Y3) or by an external clock applied to the J4 BNC jack connector (see Table 7). The EXTCLK clock input is used to generate the 1kHz keyscan clock as well as the keyscan's ADC clock. The 1kHz keyscan clock is generated by dividing the EXTCLK clock frequency by the 16-bit value contained in the KEY_DIV_HIGH (0x12) and KEY_DIV_LOW (0x13) registers. The keyscan's ADC clock is generated by dividing the EXTCLK clock by the 8-bit value contained in the KEY_DIV_ADC (0x14) register. Refer to the MAX97236 IC data sheet for additional details.

The Y3 oscillator is connected to the device's MICVDD rail through jumper JU7. To power the oscillator, install a shunt on jumper JU7 and apply power to the MICVDD rail. See the On-Board LDO Linear Regulators section.

Audio Input/Output

The device's audio input is routed from the RCA jack connectors (J2, J3) or the associated PCB pads (IN_L, IN R). The audio outputs are routed to the J1 jack. Table 8 lists the audio input connections and Table 9 lists the audio output connections. Refer to the MAX97236 IC data sheet for additional details.

JACKSW of the device is connected to the mechanical switch on the J1 jack. This pin (JACKSW) is used for jack detection and not for audio output.

Hardware Interrupt (IRQ)

The device's IRQ pin is connected to a MAXQ2000 GPIO input through jumper JU5. This allows the device's software to monitor and react to interrupts on the IRQ pin. See the Status/Masks Subtab section for the IRQ monitoring options.

I2C Interface

The EV kit includes an on-board MAXQ2000 microcontroller (U5), which provides the interface between the device and the EV kit software. The EV kit can also be evaluated with an external I2C interface by removing the shunts from jumpers JU3 and JU4 and connecting the logic-rail and I2C signals from the external interface to the provided PCB pads (VI2C, SCL, SDA, and GND).

Evaluates: MAX97236

Table 6. Jumper Function (JU1 and JU2)

SHUNT POSITION	VDD (JU1)	MICVDD (JU2)
Installed*	1.8V	3.3V
Not installed	Connect an external supply across the respective PCB pad and GND.	

^{*}Default position.

Table 7. Jumper Function (JU6 and JU7)

SHUNT POSITION		DEVICE'S EVIOLK INDUIT	
JU6	JU7	DEVICE'S EXTCLK INPUT	
Installed	Installed	19.2MHz*	
Installed	Not installed	Connect an external clock	
Not installed	×	(1MHz to 26MHz) to the J ² BNC jack connector.	

^{*}Default position.

Table 8. Audio Input (J2, J3)

AUDIO INPUT	DEVICE PIN	DESCRIPTION
J2	INL	Single-ended left-line input (IN_L)
J3	INR	Single-ended right-line input (IN_R)

Table 9. Audio Output (J1)

AUDIO OUTPUT	DEVICE PINS	DESCRIPTION
J1	RING1, RING2, SLEEVE, TIP	Single-ended headphone output

X = Don't care.

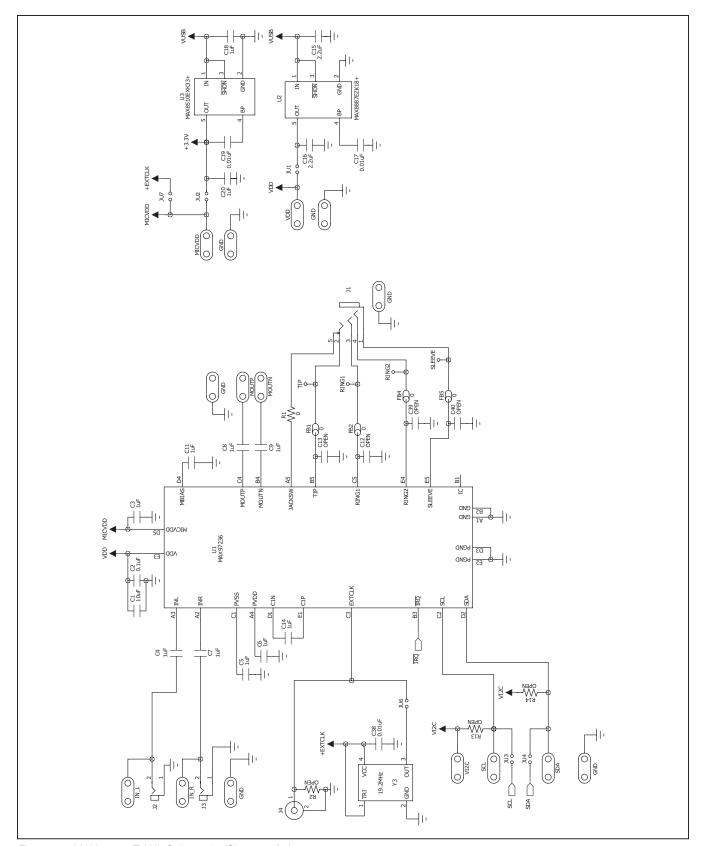


Figure 8a. MAX97236 EV Kit Schematic (Sheet 1 of 2)

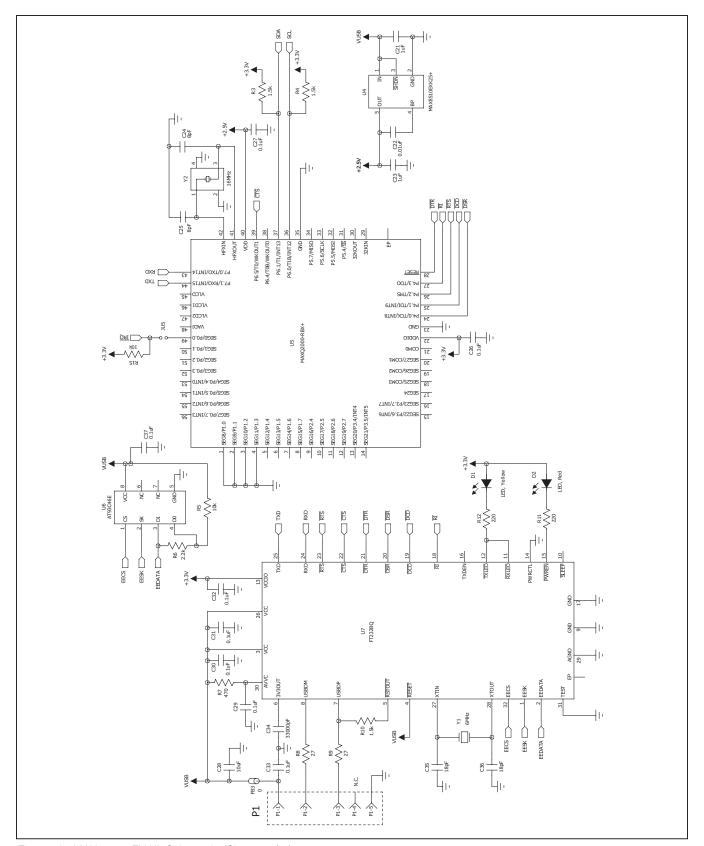


Figure 8b. MAX97236 EV Kit Schematic (Sheet 2 of 2)

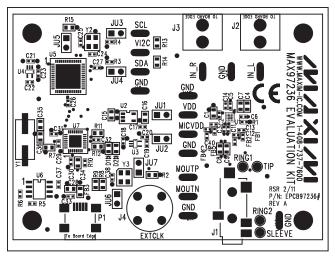


Figure 9. MAX97236 EV Kit Component Placement Guide-Component Side

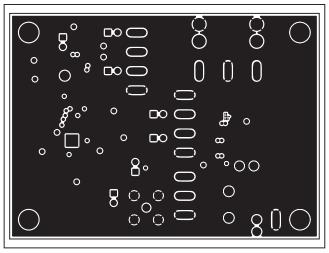


Figure 11. MAX97236 EV Kit PCB Layout—Layer 2

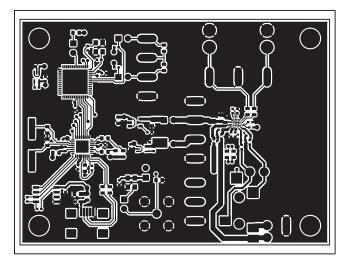


Figure 10. MAX97236 EV Kit PCB Layout—Component Side

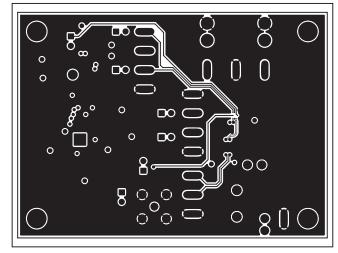


Figure 12. MAX97236 EV Kit PCB Layout—Layer 3

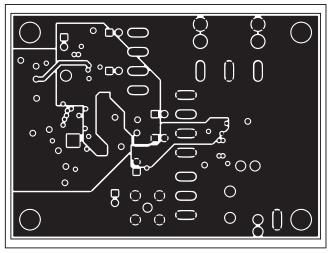


Figure 13. MAX97236 EV Kit PCB Layout—Layer 4

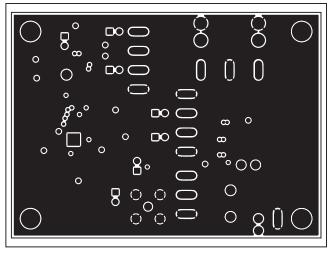


Figure 14. MAX97236 EV Kit PCB Layout—Layer 5

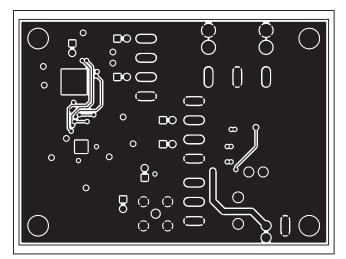


Figure 15. MAX97236 EV Kit PCB Layout—Solder Side

Evaluates: MAX97236

Ordering Information

PART	TYPE	
MAX97236EVKIT#	EV Kit	

#Denotes RoHS compliant.

Evaluates: MAX97236

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	3/11	Initial release	

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.