Features - Industry-standard Architecture - Low-cost, Easy-to-use Software Tools - High-speed, Electrically Erasable Programmable Logic Devices - 5 ns Maximum Pin-to-pin Delay - CMOS- and TTL-compatible Inputs and Outputs - Latch Feature Holds Inputs to Previous Logic States - Pin-controlled Standby Power (10 μA Typical) - Advanced Flash Technology - Reprogrammable - 100% Tested - High-reliability CMOS Process - 20-year Data Retention - 100 Erase/Write Cycles - 2,000V ESD Protection - 200 mA Latch-up Immunity - Dual Inline and Surface Mount Packages in Standard Pinouts - PCI-compliant - True Input Transition Detection "Z" and "QZ" Version - Green Package Options (Pb/Halide-free/RoHS Compliant) Available ### 1. Description The ATF22V10C is a high-performance CMOS (electrically erasable) programmable logic device (PLD) that utilizes Atmel's proven electrically erasable Flash memory technology. Speeds down to 5 ns and power dissipation as low as 100 μ A are offered. All speed ranges are specified over the full 5V \pm 10% range for industrial temperature ranges, and 5V \pm 5% for commercial temperature ranges. Several low-power options allow selection of the best solution for various types of power-limited applications. Each of these options significantly reduces total system power and enhances system reliability. # Highperformance EE PLD # ATF22V10C ATF22V10CQ See separate datasheet for ATF22V10CZ and ATF22V10CQZ options. Figure 1-1. Logic Diagram # 2. Pin Configurations **Table 2-1.** Pin Configurations (All Pinouts Top View) | Pin Name | Function | | |----------|------------------------|--| | CLK | Clock | | | IN | Logic Inputs | | | I/O | Bi-directional Buffers | | | GND | Ground | | | VCC | +5V Supply | | | PD | Power-down | | Figure 2-1. TSSOP Figure 2-3. PLCC Figure 2-2. DIP/SOIC Note: For all PLCCs (except "-5"), pins 1, 8, 15 and 22 can be left unconnected. However, if they are connected, superior performance will be achieved. 2 ## 3. Absolute Maximum Ratings* | Temperature under Bias | s40°C to +85°C | |---|--------------------------------| | Storage Temperature | 65°C to +150°C | | Voltage on Any Pin with Respect to Ground | | | Voltage on Input Pins with Respect to Ground during Programming | -2.0V to +14.0V ⁽¹⁾ | | Programming Voltage w
Respect to Ground | vith | *NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Note: 1. Minimum voltage is -0.6V DC, which may undershoot to -2.0V for pulses of less than 20 ns. Maximum output pin voltage is $V_{\rm CC}$ + 0.75V DC, which may overshoot to 7.0V for pulses of less than 20 ns. ### 4. DC and AC Operating Conditions | | Commercial | Industrial | |---------------------------------|------------|--------------| | Operating Temperature (Ambient) | 0°C - 70°C | -40°C - 85°C | | V _{CC} Power Supply | 5V ± 5% | 5V ± 10% | ### 4.1 DC Characteristics | Symbol | Parameter | Condition | | Min | Тур | Max | Units | | |--------------------------------|--------------------------------------|--|---------------------------|---------------|-------|-------|-----------------------|----| | I _{IL} | Input or I/O Low
Leakage Current | 0 ≤V _{IN} ≤V _{IL} (Max) | | | -35.0 | -10.0 | μΑ | | | I _{IH} | Input or I/O High
Leakage Current | 3.5 ≤V _{IN} ≤V _{CC} | | | | | 10.0 | μΑ | | | | | C-5, 7, 10 | Com. | | 85.0 | 130.0 | mA | | | | | C-10 | Ind. | | 90.0 | 140.0 | mA | | | Power Supply Current, | $V_{CC} = Max,$ | C-15 | Com. | | 65.0 | 90.0 | mA | | I _{CC} | Standby | V _{IN} = Max,
Outputs Open | C-15 | Ind. | | 65.0 | 115.0 | mA | | | | | CQ-15 | Com. | | 35.0 | 55.0 | mA | | | | | CQ-15 | Ind. | | 35.0 | 70.0 | mA | | | Clocked Power Supply
Current | V _{CC} = Max, Outputs Open,
f = 15 MHz | C-5, 7, 10 | Com. | | | 150.0 | mA | | | | | C-10 | Ind. | | | 160.0 | mA | | | | | C-15 | Com. | | 70.0 | 90.0 | mA | | I _{CC2} | | | C-15 | Ind. | | 70.0 | 90.0 | mA | | | | | CQ-15 | Com. | | 40.0 | 60.0 | mA | | | | | CQ-15 | Ind. | | 40.0 | 80.0 | mA | | | Power Supply Current, | V _{CC} = Max | | Com. | | 10.0 | 100.0 | μΑ | | I _{PD} | PD Mode | | | Ind. | | 10.0 | 100.0 | μA | | I _{OS} ⁽¹⁾ | Output Short Circuit
Current | V _{OUT} = 0.5V | | • | | | -130.0 | mA | | V _{IL} | Input Low Voltage | | | | | | 0.8 | ٧ | | V _{IH} | Input High Voltage | | | | 2.0 | | V _{CC} +0.75 | ٧ | | | Output Low Voltage | $V_{IN} = V_{IH} \text{ or } V_{IL},$
$V_{CC} = Min$ | I _{OL} = 16 mA | Com.,
Ind. | | | 0.5 | ٧ | | J. | | | I _{OL} = 12 mA | Mil. | | | 0.5 | V | | V _{OH} | Output High Voltage | $V_{IN} = V_{IH} \text{ or } V_{IL},$
$V_{CC} = \text{Min}$ | I _{OH} = -4.0 mA | ' | 2.4 | | | ٧ | Note: 1. Not more than one output at a time should be shorted. Duration of short circuit test should not exceed 30 sec. ## 4.2 AC Waveforms (1) Note: 1. Timing measurement reference is 1.5V. Input AC driving levels are 0.0V and 3.0V, unless otherwise specified. ### 4.3 AC Characteristics⁽¹⁾ | | | - | 5 | -7 | | -10 | | -15 | | | |------------------|---|-------|-----|----------------------|--------------------|-------|------|------|------|-------| | Symbol | Parameter | Min | Max | Min | Max | Min | Max | Min | Max | Units | | t _{PD} | Input or Feedback to Combinatorial Output | 1.0 | 5.0 | 3.0 | 7.5 | 3.0 | 10.0 | 3.0 | 15.0 | ns | | t _{CO} | Clock to Output | 1.0 | 4.0 | 2.0 | 4.5 ⁽²⁾ | 2.0 | 6.5 | 2.0 | 8.0 | ns | | t _{CF} | Clock to Feedback | | 2.5 | | 2.5 | | 2.5 | | 2.5 | ns | | t _S | Input or Feedback Setup Time | 3.0 | | 3.5 | | 4.5 | | 10.0 | | ns | | t _H | Hold Time | 0 | | 0 | | 0 | | 0 | | ns | | | External Feedback 1/(t _S + t _{CO}) | 142.0 | | 125.0 ⁽³⁾ | | 90.0 | | 55.5 | | MHz | | f _{MAX} | Internal Feedback 1/(t _S + t _{CF}) | 166.0 | | 142.0 | | 117.0 | | 80.0 | | MHz | | | No Feedback 1/(t _{WH} + t _{WL}) | 166.0 | | 166.0 | | 125.0 | | 83.3 | | MHz | | t_W | Clock Width (t _{WL} and t _{WH}) | 3.0 | | 3.0 | | 3.0 | | 6.0 | | ns | | t _{EA} | Input or I/O to Output Enable | 2.0 | 6.0 | 3.0 | 7.5 | 3.0 | 10.0 | 3.0 | 15.0 | ns | | t _{ER} | Input or I/O to Output Disable | 2.0 | 5.0 | 3.0 | 7.5 | 3.0 | 9.0 | 3.0 | 15.0 | ns | | t _{AP} | Input or I/O to Asynchronous Reset of Register | 3.0 | 7.0 | 3.0 | 10.0 | 3.0 | 12.0 | 3.0 | 20.0 | ns | | t _{AW} | Asynchronous Reset Width | 5.5 | | 7.0 | | 8.0 | | | 15.0 | ns | | t _{AR} | Asynchronous Reset Recovery Time | 4.0 | | 5.0 | | 6.0 | | | 10.0 | ns | | t _{SP} | Setup Time, Synchronous Preset | 4.0 | | 4.5 | | 6.0 | | | 10.0 | ns | | t _{SPR} | Synchronous Preset to Clock
Recovery Time | 4.0 | | 5.0 | | 8.0 | | | 10.0 | ns | Notes: 1. See ordering information for valid part numbers. - 2. 5.5 ns for DIP package devices. - 3. 111 MHz for DIP package devices. #### Power-down AC Characteristics (1)(2)(3) 4.4 | | | - | ·5 | - | -7 -10 | | 10 | -15 | | | |-------------------|--------------------------------|-----|------|-----|--------|------|------|------|------|-------| | Symbol | Parameter | Min | Max | Min | Max | Min | Max | Min | Max | Units | | t _{IVDH} | Valid Input before PD High | 5.0 | | 7.5 | | 10.0 | | 15.0 | | ns | | t _{GVDH} | Valid OE before PD High | 0 | | 0 | | 0 | | 0 | | ns | | t _{CVDH} | Valid Clock before PD High | 0 | | 0 | | 0 | | | | ns | | t _{DHIX} | Input Don't Care after PD High | | 5.0 | | 7.0 | | 10.0 | | 15.0 | ns | | t _{DHGX} | OE Don't Care after PD High | | 5.0 | | 7.0 | | 10.0 | | 15.0 | ns | | t _{DHCX} | Clock Don't Care after PD High | | 5.0 | | 7.0 | | 10.0 | | 15.0 | ns | | t _{DLIV} | PD Low to Valid Input | | 5.0 | | 7.5 | | 10.0 | | 15.0 | ns | | t _{DLGV} | PD Low to Valid OE | | 15.0 | | 20.0 | | 25.0 | | 30.0 | ns | | t _{DLCV} | PD Low to Valid Clock | | 15.0 | | 20.0 | | 25.0 | | 30.0 | ns | | t _{DLOV} | PD Low to Valid Output | | 20.0 | | 25.0 | | 30.0 | | 35.0 | ns | - Notes: 1. Output data is latched and held. - 2. High-Z outputs remain high-Z. - 3. Clock and input transitions are ignored. #### 4.5 **Input Test Waveforms** #### 4.5.1 **Input Test Waveforms** and Measurement Levels #### 4.5.2 **Commercial Output Test Loads** R1=300 $$\Omega$$ OUTPUT PIN R2=390 Ω CL=50pF #### Pin Capacitance 4.6 Pin Capacitance (f = 1 MHz, T = 25° C⁽¹⁾) Table 4-1. | | Тур | Max | Units | Conditions | |------------------|-----|-----|-------|-----------------------| | C _{IN} | 5 | 8 | pF | $V_{IN} = 0V$ | | C _{OUT} | 6 | 8 | pF | V _{OUT} = 0V | Note: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested. ### ATF22V10C(Q) 6 ### 7. Programming/Erasing Programming/erasing is performed using standard PLD programmers. See "CMOS PLD Programming Hardware & Software Support" for information on software/programming. **Table 7-1.** Programming/Erasing | Parameter | Description | Тур | Max | Units | |------------------|------------------------|-----|-------|-------| | t _{PR} | Power-up Reset Time | 600 | 1,000 | ns | | V _{RST} | Power-up Reset Voltage | 3.8 | 4.5 | V | ### 8. Input and I/O Pin-keeper Circuits The ATF22V10C contains internal input and I/O pin-keeper circuits. These circuits allow each ATF22V10C pin to hold its previous value even when it is not being driven by an external source or by the device's output buffer. This helps to ensure that all logic array inputs are at known valid logic levels. This reduces system power by preventing pins from floating to indeterminate levels. By using pin-keeper circuits rather than pull-up resistors, there is no DC current required to hold the pins in either logic state (high or low). These pin-keeper circuits are implemented as weak feedback inverters, as shown in the Input Diagram below. These keeper circuits can easily be overdriven by standard TTL- or CMOS-compatible drivers. The typical overdrive current required is $40 \, \mu A$. Figure 8-1. Input Diagram ### 12.2 ATF22V10CQ Green Package Options (Pb/Halide-free/RoHS Compliant) | t _{PD} (ns) | t _S (ns) | t _{co} (ns) | Ordering Code | Package | Operation Range | |----------------------|---------------------|----------------------|--|---------------------------|--| | 5 | 3 | 4 | ATF22V10C-5JX | 28J | Commercial
(0° C to 70° C) | | 7.5 | 3.5 | 4.5 | ATF22V10C-7PX
ATF22V10C-7SX | 24P3
24S | Commercial
(0° C to 70° C) | | 7.5 | 3.5 | 4.5 | ATF22V10C-7JU | 28J | Industrial
(-40°C to 85°C) | | 10 | 4.5 | 6.5 | ATF22V10C-10JU
ATF22V10C-10PU
ATF22V10C-10SU
ATF22V10C-10XU | 28J
24P3
24S
24X | Industrial
(-40° C to 85° C) | | 15 | 10 | 8 | ATF22V10C-15JU
ATF22V10C-15PU
ATF22V10CQ-15JU | 28J
24P3
28J | Industrial
(-40° C to 85° C)
Industrial
(-40° C to 85° C) | # 12.3 Using "C" Product for Industrial To use commercial product for Industrial temperature ranges, down-grade one speed grade from the "I" to the "C" device (7 ns "C" = 10 ns "I") and de-rate power by 30%. | | Package Type | | | | | | |------|---|--|--|--|--|--| | 28J | 28-lead, Plastic J-leaded Chip Carrier (PLCC) | | | | | | | 24P3 | 24-pin, 0.300" Wide, Plastic Dual Inline Package (PDIP) | | | | | | | 24S | 24-lead, 0.300" Wide, Plastic Gull Wing Small Outline (SOIC) | | | | | | | 24X | 24-lead, 4.4 mm Wide, Plastic Thin Shrink Small Outline (TSSOP) | | | | | | ### 13.2 24P3 - PDIP Notes: - . This package conforms to JEDEC reference MS-001, Variation AF. - Dimensions D and E1 do not include mold Flash or Protrusion. Mold Flash or Protrusion shall not exceed 0.25 mm (0.010"). ### **COMMON DIMENSIONS** (Unit of Measure = mm) | SYMBOL | MIN | NOM | MAX | NOTE | | | | |--------|--------|-----------|--------|--------|--|--|--| | Α | - | Ī | 5.334 | | | | | | A1 | 0.381 | - | _ | | | | | | D | 31.623 | - | 32.131 | Note 2 | | | | | Е | 7.620 | - | 8.255 | | | | | | E1 | 6.096 | _ | 7.112 | Note 2 | | | | | В | 0.356 | ı | 0.559 | | | | | | B1 | 1.270 | - | 1.651 | | | | | | L | 2.921 | _ | 3.810 | | | | | | С | 0.203 | - | 0.356 | | | | | | eB | _ | _ | 10.922 | | | | | | eC | 0.000 | _ | 1.524 | | | | | | е | | 2.540 TYP | | | | | | TITLE $\bf 24P3,\ 24\text{-lead}\ (0.300\mbox{"}/7.62\ mm\ Wide)$ Plastic Dual Inline Package (PDIP) DRAWING NO. 24P3