LD1085xx

3 A low drop positive voltage regulator adjustable and fixed

Features

- Typical dropout 1.3 V (at 3 A)
- Three terminal adjustable or fixed output voltage $1.5 \mathrm{~V}, 1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$.
- Automotive Grade product: adjustable $\mathrm{V}_{\text {OUT }}$ only in TO-220 Full Pack package
- Guaranteed output current up to 3 A
- Output tolerance $\pm 1 \%$ at $25^{\circ} \mathrm{C}$ and $\pm 2 \%$ in full temperature range
- Internal power and thermal limit
- Wide operating temperature range $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

■ Package available: TO-220, TO-220FP, DPAK, D²PAK, D²PAK/A

- Pinout compatibility with standard adjustable VREG

Description

The LD1085xx is a low drop voltage regulator able to provide up to 3 A of output current. Dropout is guaranteed at a maximum of 1.2 V at the maximum output current, decreasing at lower loads. The LD1085xx is pin to pin compatible with the older 3-terminal adjustable regulators, but has better performances in term of drop and output tolerance.

A 2.85 V output version is suitable for SCSI-2 active termination. Unlike PNP regulators, where a part of the output current is wasted as quiescent current, the LD1085xx quiescent current flows

into the load, so increase efficiency. Only a $10 \mu \mathrm{~F}$ minimum capacitor is need for stability.

The device is supplied in TO-220, TO-220FP, DPAK, D2PAK and D2PAK/A. On chip trimming allows the regulator to reach a very tight output voltage tolerance, within $\pm 1 \%$ at $25^{\circ} \mathrm{C}$.
The LD1085xx is available as Automotive Grade in TO-220FP package only, for the option of adjustable output voltage whose commercial part number is shown in the Table 11 (order codes). This device is qualified according to the specification AEC-Q100 of the Automotive market, in the temperature range $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, and the statistical tests PAT, SYL, SBL are performed.

Table 1. Device summary

Part numbers		
LD1085XX	LD1085XX25	
LD1085XX15	LD1085XX33	
LD1085XX18	LD1085XX50	

3 Maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{I}	DC input voltage	30	V
I_{O}	Output current	Internally limited	mA
P_{D}	Power dissipation	Internally limited	mW
$\mathrm{T}_{\mathrm{STG}}$	Storage temperature range	-55 to +150	${ }^{\circ} \mathrm{C}$
T_{OP}	Operating junction temperature range	-40 to +125	${ }^{\circ} \mathrm{C}$

Note: \quad Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied

Table 3. Thermal data

Symbol	Parameter	TO-220	TO-220FP	DPAK	D 2 PAK D 2 PAK/A	Unit
$\mathrm{R}_{\text {thJC }}$	Thermal resistance junction-case	3	5	8	3	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {thJA }}$	Thermal resistance junction-ambient	50	60	100	62.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Table 9. Electrical characteristics of LD1085\#
$\left(\mathrm{V}_{\mathrm{I}}=4.25 \mathrm{~V}, \mathrm{C}_{\mathrm{I}}=\mathrm{C}_{\mathrm{O}}=10 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=-40\right.$ to $125^{\circ} \mathrm{C}$, unless otherwise specified).

Symbol	Parameter	Test condition	Min.	Typ.	Max.	Unit
V_{O}	Output voltage ${ }^{(1)}$	$\mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA} \mathrm{~T}_{J}=25^{\circ} \mathrm{C}$	1.237	1.25	1.263	V
		$\mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}$ to $3 \mathrm{~A}, \mathrm{~V}_{\mathrm{I}}=2.85$ to 30 V	1.225	1.25	1.275	V
$\Delta \mathrm{V}_{\mathrm{O}}$	Line regulation	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{I}}=2.85 \text { to } 16.5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \end{aligned}$		0.015	0.2	\%
		$\mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{I}}=2.85$ to 16.5 V		0.035	0.2	\%
$\Delta \mathrm{V}_{\mathrm{O}}$	Load regulation	$\mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}$ to $3 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		0.1	0.3	\%
		$\mathrm{I}_{\mathrm{O}}=0$ to 3 A		0.2	0.4	\%
V_{d}	Dropout voltage	$\mathrm{I}_{0}=3 \mathrm{~A}$		1.3	1.5	V
$\mathrm{I}_{\mathrm{O}(\text { min })}$	Minimum load current	$\mathrm{V}_{1}=30 \mathrm{~V}$		3	10	mA
$\mathrm{I}_{\text {sc }}$	Short circuit current	$\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	5.5	6.5		A
		$\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}=25 \mathrm{~V}$	0.5	0.7		A
	Thermal regulation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 30 \mathrm{~ms}$ pulse		0.003	0.015	\%/W
SVR	Supply voltage rejection	$\begin{aligned} & \mathrm{f}=120 \mathrm{~Hz}, \mathrm{C}_{\mathrm{O}}=25 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{ADJ}}=25 \mu \mathrm{~F}, \\ & \mathrm{l}_{\mathrm{O}}=3 \mathrm{~A}, \mathrm{~V}_{\mathrm{I}}=6.25 \pm 3 \mathrm{~V} \end{aligned}$	60	72		dB
$\mathrm{I}_{\text {ADJ }}$	Adjust pin current	$\mathrm{V}_{\mathrm{I}}=4.25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}$		55	120	$\mu \mathrm{A}$
$\Delta_{\text {ADJ }}$	Adjust pin current change ${ }^{(1)}$	$\mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}$ to $3 \mathrm{~A}, \mathrm{~V}_{\mathrm{I}}=2.85$ to 16.5 V		0.2	5	$\mu \mathrm{A}$
eN	RMS output noise voltage (\% of V_{O})	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=10 \mathrm{~Hz}$ to 10 kHz		0.003		\%
S	Temperature stability			0.5		\%
S	Long term stability	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}, 1000 \mathrm{Hrs}$		0.5		\%

1. See short-circuit current curve for available output current at fixed dropout.

TO-220 mechanical data

Dim.	mm.			inch.		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A	4.40		4.60	0.173		0.181
C	1.23		1.32	0.048		0.051
D	2.40		2.72	0.094		0.107
D1		1.27			0.050	
E	0.49		0.70	0.019		0.027
F	0.61		0.88	0.024		0.034
F1	1.14		1.70	0.044		0.067
F2	1.14		1.70	0.044		0.067
G	4.95		5.15	0.194		0.203
G1	2.4		2.7	0.094		0.106
H2	10.0		10.40	0.393		0.409
L2		16.4			0.645	
L4	13.0		14.0	0.511		0.551
L5	2.65		2.95	0.104		0.116
L6	15.25		15.75	0.600		0.620
L7	6.2		6.6	0.244		0.260
L9	3.5		3.93	0.137		0.154
DIA.	3.75		3.85	0.147		0.151

8 Order codes

Table 11. Order codes

Packages					Output voltage
TO-220	TO-220FP	D ${ }^{2}$ PAK	DPAK (T\&R)	D²PAK/A (T\&R)	
			LD1085DT15R		1.5 V
		LD1085D2T18R	LD1085DT18R	LD1085D2M18R	1.8 V
				LD1085D2M25R	2.5 V
		LD1085D2T33R		LD1085D2M33R	3.3 V
LD1085V50					5.0 V
LD1085V	LD1085P	LD1085D2T-R		LD1085D2M-R	ADJ
	LD1085PY ${ }^{(1)}$				ADJ

1. Automotive Grade products.
