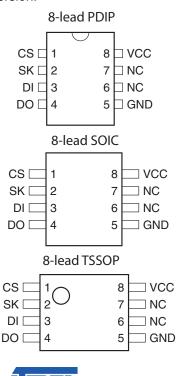
1. Features

- Low-voltage and Standard-voltage Operation
 - 1.8 (V_{CC} = 1.8V to 5.5V)
- Internal Organization
 64 x 16
- Three-wire Serial Interface
- 2 MHz Clock Rate (5V) Compatibility
- Self-timed Write Cycle (5 ms max)
- High Reliability
 - Endurance: 1 Million Write Cycles
 - Data Retention: 100 Years
- 8-lead PDIP, 8-lead JEDEC SOIC, and 8-lead TSSOP Packages
- Lead-free/Halogen-free Devices

2. Description


The AT93C46E provides 1024 bits of serial electrically-erasable programmable readonly memory (EEPROM) organized as 64 words of 16 bits each. The device is optimized for use in many industrial and commercial applications where low-power and low-voltage operation are essential. The AT93C46E is available in space-saving 8lead PDIP, 8-lead JEDEC SOIC, and 8-lead TSSOP packages.

The AT93C46E is enabled through the Chip Select pin (CS) and accessed via a threewire serial interface consisting of Data Input (DI), Data Output (DO), and Shift Clock (SK). Upon receiving a Read instruction at DI, the address is decoded and the data is clocked out serially on the data output DO pin. The write cycle is completely self-timed and no separate erase cycle is required before write. The write cycle is only enabled when the part is in the erase/write enable state. When CS is brought high following the initiation of a write cycle, the DO pin outputs the ready/busy status of the part.

The AT93C46E is available in 1.8V (1.8V to 5.5V) version.

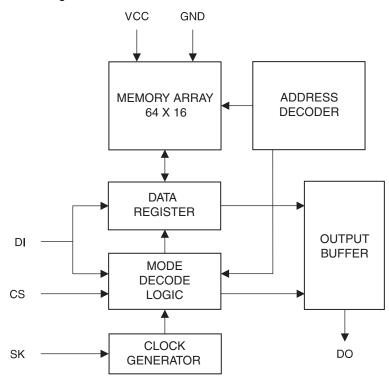
Table 2-1. Pin Configuration

	•
Pin Name	Function
CS	Chip Select
SK	Serial Data Clock
DI	Serial Data Input
DO	Serial Data Output
GND	Ground
VCC	Power Supply
NC	No Connect

Three-wire Serial EEPROM

1K (64 x 16)

AT93C46E



Absolute Maximum Ratings*

Operating Temperature55°C to +125°C	
Storage Temperature65°C to +150°C	
Voltage on Any Pin with Respect to Ground1.0V to +7.0V	
Maximum Operating Voltage 6.25V	,
DC Output Current	

Figure 2-1. Block Diagram

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 2-2.Pin Capacitance⁽¹⁾

Symbol	Test Conditions	Мах	Units	Conditions
C _{OUT}	Output Capacitance (DO)	5	pF	$V_{OUT} = 0V$
C _{IN}	Input Capacitance (CS, SK, DI)	5	pF	$V_{IN} = 0V$

Note: This parameter is characterized and is not 100% tested.

AT93C46E

2

AT93C46E

Table 2-3.DC Characteristics

Symbol	Parameter	Test Condition		Min	Тур	Max	Units
V _{CC1}	Supply Voltage			1.8		5.5	V
V _{CC2}	Supply Voltage			2.7		5.5	V
V _{CC3}	Supply Voltage			4.5		5.5	V
1	Current Current		Read at 1.0 MHz		0.5	2.0	mA
I _{CC}	Supply Current	$V_{CC} = 5.0V$	Write at 1.0 MHz		0.5	2.0	mA
I _{SB1}	Standby Current	$V_{\rm CC} = 1.8V$	CS = 0V		0.4	1.0	μA
I _{SB2}	Standby Current	$V_{\rm CC} = 2.7 V$	CS = 0V		6.0	10.0	μA
I _{SB3}	Standby Current	$V_{\rm CC} = 5.0 V$	CS = 0V		10.0	15.0	μA
I _{IL}	Input Leakage	$V_{IN} = 0V$ to V_{CC}			0.1	1.0	μA
I _{OL}	Output Leakage	$V_{IN} = 0V$ to V_{CC}			0.1	1.0	μA
$V_{IL1}^{(1)}$ $V_{IH1}^{(1)}$	Input Low Voltage Input High Voltage	$2.7V \leq V_{CC} \leq 5.5V$		-0.6 2.0		0.8 V _{CC} + 1	V
$V_{IL2}^{(1)}$ $V_{IH2}^{(1)}$	Input Low Voltage Input High Voltage	$1.8V \le V_{CC} \ \le 2.7V$		-0.6 V _{CC} x 0.7		V _{CC} x 0.3 V _{CC} + 1	V
V _{OL1}	Output Low Voltage		I _{OL} = 2.1 mA			0.4	V
V _{OH1}	Output High Voltage	$2.7V \leq V_{CC} \leq 5.5V$	I _{OH} = -0.4 mA	2.4			V
V _{OL2}	Output Low Voltage		I _{OL} = 0.15 mA			0.2	V
V _{OH2}	Output High Voltage	$1.8V \le V_{CC} \le 2.7V$	I _{OH} = -100 μA	$V_{CC} - 0.2$			V

Applicable over recommended operating range from: $T_{AI} = -40^{\circ}$ C to +85°C, $V_{CC} = +1.8$ V to +5.5V, (unless otherwise noted)

Note: 1. V_{IL} min and V_{IH} max are reference only and are not tested.

Table 2-4. AC Characteristics

Applicable over recommended operating range from $T_A = -40^{\circ}C$ to + 85°C, $V_{CC} = +2.7V$ to + 5.5V, CL = 1 TTL Gate and 100 pF (unless otherwise noted)

Symbol	Parameter	Test Condition		Min	Тур	Max	Units
f _{SK}	SK Clock Frequency	$\begin{array}{c} 4.5V \leq V_{CC} \leq 5.5V \\ 2.7V \leq V_{CC} \leq 5.5V \\ 1.8V \leq V_{CC} \leq 5.5V \end{array}$	/	0 0 0		2 1 0.25	MHz
t _{sĸн}	SK High Time	$\begin{array}{l} 4.5V \leq V_{CC} \leq 5.5V \\ 2.7V \leq V_{CC} \leq 5.5V \\ 1.8V \leq V_{CC} \leq 5.5V \end{array}$	/	250 250 1000			ns
t _{SKL}	SK Low Time	$\begin{array}{c} 4.5V \leq V_{CC} \leq 5.5V \\ 2.7V \leq V_{CC} \leq 5.5V \\ 1.8V \leq V_{CC} \leq 5.5V \end{array}$	/	250 250 1000			ns
t _{CS}	Minimum CS Low Time	$\begin{array}{c} 4.5V \leq V_{CC} \leq 5.5V \\ 2.7V \leq V_{CC} \leq 5.5V \\ 1.8V \leq V_{CC} \leq 5.5V \end{array}$	/	250 250 1000			ns
t _{css}	CS Setup Time	Relative to SK	$ \begin{array}{c} 4.5V \leq V_{CC} \; \leq 5.5V \\ 2.7V \leq V_{CC} \; \leq 5.5V \\ 1.8V \leq V_{CC} \; \leq 5.5V \end{array} $	50 50 200			ns
t _{DIS}	DI Setup Time	Relative to SK	$\begin{array}{c} 4.5V \leq V_{CC} \; \leq 5.5V \\ 2.7V \leq V_{CC} \; \leq 5.5V \\ 1.8V \leq V_{CC} \; \leq 5.5V \end{array}$	100 100 400			ns
t _{CSH}	CS Hold Time	Relative to SK		0			ns
t _{DIH}	DI Hold Time	Relative to SK	$\begin{array}{l} 4.5V \leq V_{CC} \; \leq 5.5V \\ 2.7V \leq V_{CC} \; \leq 5.5V \\ 1.8V \leq V_{CC} \; \leq 5.5V \end{array}$	100 100 400			ns
t _{PD1}	Output Delay to "1"	AC Test	$ \begin{array}{c} 4.5V \leq V_{CC} \; \leq 5.5V \\ 2.7V \leq V_{CC} \; \leq 5.5V \\ 1.8V \leq V_{CC} \; \leq 5.5V \\ \end{array} $			250 250 1000	ns
t _{PD0}	Output Delay to "0"	AC Test	$\begin{array}{c} 4.5V \leq V_{CC} \ \leq 5.5V \\ 2.7V \leq V_{CC} \ \leq 5.5V \\ 1.8V \leq V_{CC} \ \leq 5.5V \\ \end{array}$			250 250 1000	ns
t _{SV}	CS to Status Valid	AC Test	$\begin{array}{c} 4.5V \leq V_{CC} \; \leq 5.5V \\ 2.7V \leq V_{CC} \; \leq 5.5V \\ 1.8V \leq V_{CC} \; \leq 5.5V \\ \end{array}$			250 250 1000	ns
t _{DF}	CS to DO in High Impedance	AC Test CS = V _{IL}	$\begin{array}{c} 4.5V \leq V_{CC} \; \leq 5.5V \\ 2.7V \leq V_{CC} \; \leq 5.5V \\ 1.8V \leq V_{CC} \; \leq 5.5V \\ \end{array}$			100 150 400	ns
t _{WP}	Write Cycle Time			0.1	3	5	ms
Endurance ⁽¹⁾) 5.0V, 25°C	5.0V, 25°C		1M			Write Cycle

Note: 1. This parameter is ensured by characterization.

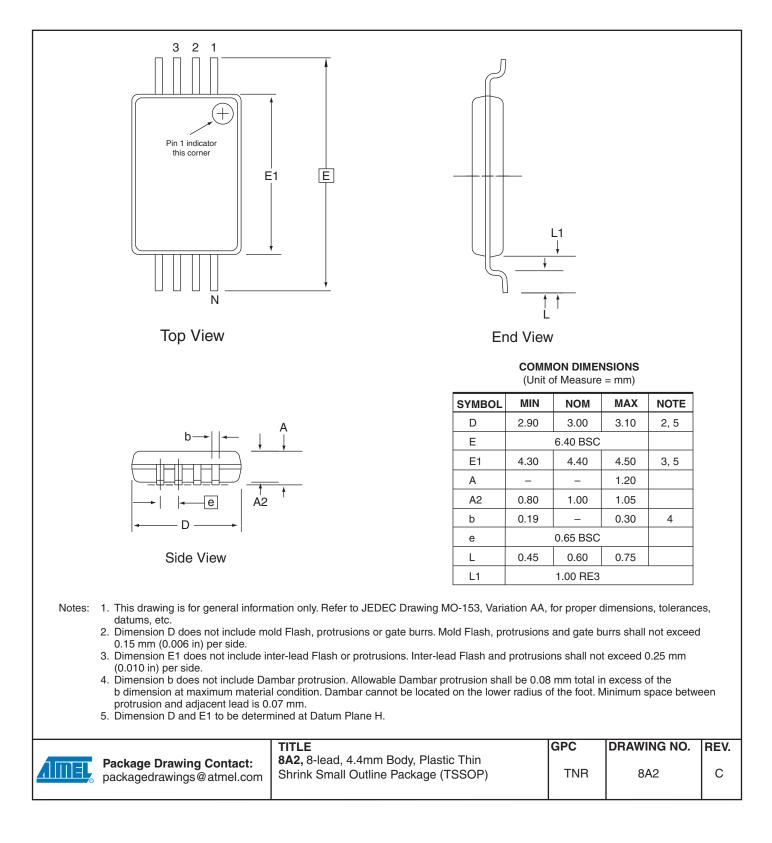
3. Functional Description

The AT93C46E is accessed via a simple and versatile three-wire serial communication interface. Device operation is controlled by seven instructions issued by the host processor. *A valid instruction starts with a rising edge of CS* and consists of a start bit (logic "1") followed by the appropriate op code and the desired memory address location.

4

AT93C46E Ordering Information

Ordering Code	Package	Operation Range
AT93C46E-PU (Bulk Form only)	8P3	
AT93C46EN-SH-B ⁽¹⁾ (NiPdAu Lead Finish)	8S1	Lead-free/Halogen-free/
AT93C46EN-SH-T ⁽²⁾ (NiPdAu Lead Finish)	8S1	Industrial Temperature
AT93C46E-TH-B ⁽¹⁾ (NiPdAu Lead Finish)	8A2	(–40°C to 85°C)
AT93C46E-TH-T ⁽²⁾ (NiPdAu Lead Finish)	8A2	


Notes: 1. "B" denotes bulk.

2. "-T" denotes tape and reel. SOIC = 4K per reel. TSSOP = 5K per reel.

	Package Type			
8P3	8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)			
8S1	8-lead, 0.150" Wide, Plastic Gull Wing Small Outline (JEDEC SOIC)			
8A2	8A2 8-lead, 0.170" Wide, Thin Small Outline Package (TSSOP)			
	Options			
-1.8	Low Voltage (1.8V to 5.5V)			

10 **AT93C46E**

8A2 - TSSOP

