

www.fairchildsemi.com

CD4013BC
AC Electrical Characteristics (Note 5)
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{k}$, unless otherwise noted

Symbol	Parameter	Conditions	Min	Typ	Max	Units
CLOCK OPERATION						
$\mathrm{t}_{\text {PHL }}$, tPLH	Propagation Delay Time	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{array}{r} \hline 200 \\ 80 \\ 65 \\ \hline \end{array}$	$\begin{aligned} & \hline 350 \\ & 160 \\ & 120 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\text {THL }}$, $\mathrm{T}_{\text {TLH }}$	Transition Time	$\begin{aligned} & \hline V_{D D}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{gathered} \hline 100 \\ 50 \\ 40 \\ \hline \end{gathered}$	$\begin{gathered} \hline 200 \\ 100 \\ 80 \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
${ }_{\text {twL }} \mathrm{t}_{\mathrm{WW}}$	Minimum Clock Pulse Width	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{gathered} \hline 100 \\ 40 \\ 32 \\ \hline \end{gathered}$	$\begin{gathered} \hline 200 \\ 80 \\ 65 \\ \hline \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{t}_{\mathrm{RCL}}, \mathrm{t}_{\text {FCL }}$	Maximum Clock Rise and Fall Time	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \\ & \hline \end{aligned}$			$\begin{gathered} 15 \\ 10 \\ 5 \end{gathered}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \end{aligned}$
tsu	Minimum Set-Up Time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 20 \\ & 15 \\ & 12 \end{aligned}$	$\begin{aligned} & 40 \\ & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
${ }_{\text {f }}$	Maximum Clock Frequency	$\begin{aligned} & \hline V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.5 \\ & 6.2 \\ & 7.6 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 5 \\ 12.5 \\ 15.5 \end{gathered}$		$\begin{aligned} & \hline \mathrm{MHz} \\ & \mathrm{MHz} \\ & \mathrm{MHz} \\ & \hline \end{aligned}$
SET AND RESET OPERATION						
$\mathrm{t}_{\text {PHL(R) }}$, $\mathrm{t}_{\mathrm{PLH}(\mathrm{S})}$	Propagation Delay Time	$\begin{aligned} & \hline V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 150 \\ & 65 \\ & 45 \end{aligned}$	$\begin{gathered} \hline 300 \\ 130 \\ 90 \end{gathered}$	$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{WH}(\mathrm{R})}, \\ & \mathrm{t}_{\mathrm{WH}(\mathrm{~S})} \end{aligned}$	Minimum Set and Reset Pulse Width	$\begin{aligned} & \hline V_{D D}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & 90 \\ & 40 \\ & 25 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 180 \\ 80 \\ 50 \\ \hline \end{array}$	$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$
$\mathrm{C}_{\text {IN }}$	Average Input Capacitance	Any Input		5	7.5	pF

Note 5: AC Parameters are guaranteed by DC correlated testing.

Switching Time Waveforms

www.fairchildsemi.com

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
[^0]
[^0]: Fairchild does not assume any responsibility for use of any circuitry described, no circuit patert licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

