MJ4502

High-Power NPN Silicon Transistor

This transistor is for use as an output device in complementary audio amplifiers to 100–Watts music power per channel.

Features

- High DC Current Gain $h_{FE} = 25-100 @ I_C = 7.5 A$
- Excellent Safe Operating Area
- Complement to the NPN MJ802
- Pb-Free Package is Available*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector–Emitter Voltage	V _{CER}	100	Vdc
Collector-Base Voltage	V _{CB}	100	Vdc
Collector–Emitter Voltage	V _{CEO}	90	Vdc
Emitter-Base Voltage	V _{EB}	4.0	Vdc
Collector Current	Ic	30	Adc
Base Current	I _B	7.5	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	200 1.14	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

Characteristics	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	θ _{JC}	0.875	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

ON Semiconductor®

30 AMPERE POWER TRANSISTOR PNP SILICON 100 VOLTS – 200 WATTS

TO-204AA (TO-3) CASE 1-07 STYLE 1

MARKING DIAGRAM

MJ4502 = Device Code
G = Pb-Free Package
A = Assembly Location

Y = Year WW = Work Week MEX = Country of Origin

ORDERING INFORMATION

0.1.5 = 1.11.1.0 11.11 0.11.11.11.11.11			
Device	Package	Shipping	
MJ4502	TO-204	100 Units / Tray	
MJ4502G	TO-204 (Pb-Free)	100 Units / Tray	

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MJ4502

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	,	-1	1	-1
Collector–Emitter Breakdown Voltage (Note 1) ($I_C = 200 \text{ mAdc}, R_{BE} = 100 \Omega$)	V _(BR) CER	100	-	Vdc
Collector–Emitter Sustaining Voltage (Note 1) (I _C = 200 mAdc)	V _{CEO(sus)}	90	_	Vdc
Collector–Base Cutoff Current $(V_{CB} = 100 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 100 \text{ Vdc}, I_E = 0, T_C = 150^{\circ}\text{C})$	Ісво	- -	1.0 5.0	mAdc
Emitter–Base Cutoff Current $(V_{BE} = 4.0 \text{ Vdc}, I_C = 0)$	I _{EBO}	_	1.0	mAdc
ON CHARACTERISTICS				
DC Current Gain ($I_C = 7.5 \text{ Adc}, V_{CE} = 2.0 \text{ Vdc}$)	h _{FE}	25	100	_
Base–Emitter "On" Voltage (I _C = 7.5 Adc, V _{CE} = 2.0 Vdc)	V _{BE(on)}	-	1.3	Vdc
Collector–Emitter Saturation Voltage ($I_C = 7.5$ Adc, $I_B = 0.75$ Adc)	V _{CE(sat)}	-	0.8	Vdc
Base–Emitter Saturation Voltage (I _C = 7.5 Adc, I _B = 0.75 Adc)	V _{BE(sat)}	-	1.3	Vdc
DYNAMIC CHARACTERISTICS				
Current Gain – Bandwidth Product (I _C = 1.0 Adc, V _{CE} = 10 Vdc, f = 1.0 MHz)	f _T	2.0	-	MHz

^{1.} Pulse Test: Pulse Width $\leq 300 \,\mu\text{s}$, Duty Cycle $\leq 2.0\%$.

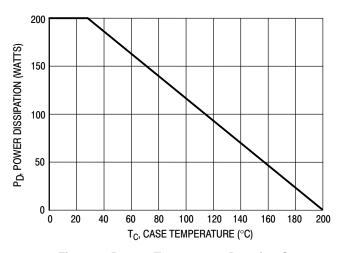
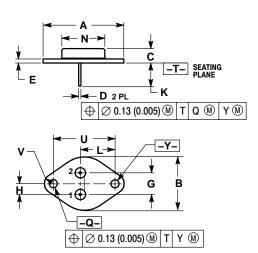



Figure 1. Power-Temperature Derating Curve

MJ4502

PACKAGE DIMENSIONS

TO-204 (TO-3) CASE 1-07 **ISSUE Z**

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: INCH.

 3. ALL RULES AND NOTES ASSOCIATED WITH REFERENCED TO-204AA OUTLINE SHALL APPLY.

	INCHES		MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	1.550 REF		39.37	REF	
В		1.050		26.67	
С	0.250	0.335	6.35	8.51	
D	0.038	0.043	0.97	1.09	
Е	0.055	0.070	1.40	1.77	
G	0.430 BSC		10.92 BSC		
Н	0.215 BSC		5.46	BSC	
K	0.440	0.480	11.18	12.19	
L	0.665 BSC		16.89 BSC		
N		0.830		21.08	
Q	0.151	0.165	3.84	4.19	
U	1.187 BSC		30.15 BSC		
V	0.131	0.188	3.33	4.77	

STYLE 1: PIN 1. BASE 2. EMITTER CASE: COLLECTOR