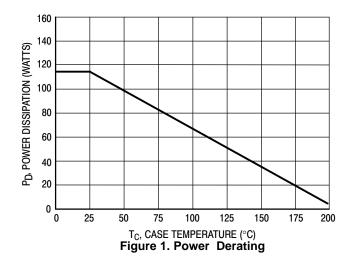
2N3055(NPN), MJ2955(PNP)

Preferred Device

Complementary Silicon Power Transistors

Complementary silicon power transistors are designed for general-purpose switching and amplifier applications.


Features

- DC Current Gain $-h_{FE} = 20-70$ @ $I_C = 4$ Adc
- Collector–Emitter Saturation Voltage $V_{CE(sat)} = 1.1 \text{ Vdc (Max)} @ I_C = 4 \text{ Adc}$
- Excellent Safe Operating Area
- Pb-Free Packages are Available*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	60	Vdc
Collector-Emitter Voltage	V _{CER}	70	Vdc
Collector-Base Voltage	V _{CB}	100	Vdc
Emitter-Base Voltage	V _{EB}	7	Vdc
Collector Current – Continuous	I _C	15	Adc
Base Current	Ι _Β	7	Adc
Total Power Dissipation @ T _C = 25°C Derate Above 25°C	P _D	115 0.657	W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor®

15 AMPERE POWER TRANSISTORS COMPLEMENTARY SILICON 60 VOLTS, 115 WATTS

TO-204AA (TO-3) CASE 1-07 STYLE 1

MARKING DIAGRAM

xxxx55 = Device Code

xxxx = 2N30 or MJ20 = Pb-Free Package

G = Pb-Free Packa A = Location Code

YY = Year WW = Work Week MEX = Country of Orgin

ORDERING INFORMATION

Device	Package	Shipping
2N3055	TO-204AA	100 Units / Tray
2N3055G	TO-204AA (Pb-Free)	100 Units / Tray
MJ2955	TO-204AA	100 Units / Tray
MJ2955G	TO-204AA (Pb-Free)	100 Units / Tray

Preferred devices are recommended choices for future use and best overall value

2N3055(NPN), MJ2955(PNP)

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	1.52	°C/W

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS*				
Collector–Emitter Sustaining Voltage (Note 1) ($I_C = 200 \text{ mAdc}, I_B = 0$)	V _{CEO(sus)}	60	_	Vdc
Collector–Emitter Sustaining Voltage (Note 1) (I_C = 200 mAdc, R_{BE} = 100 Ω)		70	_	Vdc
Collector Cutoff Current (V _{CE} = 30 Vdc, I _B = 0)		-	0.7	mAdc
Collector Cutoff Current $(V_{CE} = 100 \text{ Vdc}, V_{BE(off)} = 1.5 \text{ Vdc})$ $(V_{CE} = 100 \text{ Vdc}, V_{BE(off)} = 1.5 \text{ Vdc}, T_{C} = 150^{\circ}\text{C})$	I _{CEX}	- -	1.0 5.0	mAdc
Emitter Cutoff Current (V _{BE} = 7.0 Vdc, I _C = 0)	I _{EBO}	-	5.0	mAdc
ON CHARACTERISTICS* (Note 1)				
DC Current Gain	h _{FE}	20 5.0	70 -	_
Collector–Emitter Saturation Voltage ($I_C = 4.0 \text{ Adc}$, $I_B = 400 \text{ mAdc}$) ($I_C = 10 \text{ Adc}$, $I_B = 3.3 \text{ Adc}$)	V _{CE(sat)}	-	1.1 3.0	Vdc
Base-Emitter On Voltage (I _C = 4.0 Adc, V _{CE} = 4.0 Vdc)	V _{BE(on)}	-	1.5	Vdc
SECOND BREAKDOWN				
Second Breakdown Collector Current with Base Forward Biased ($V_{CE} = 40 \text{ Vdc}, t = 1.0 \text{ s}, \text{Nonrepetitive}$)		2.87	-	Adc
DYNAMIC CHARACTERISTICS				
Current Gain – Bandwidth Product (I _C = 0.5 Adc, V _{CE} = 10 Vdc, f = 1.0 MHz)		2.5	_	MHz
*Small–Signal Current Gain ($I_C = 1.0$ Adc, $V_{CE} = 4.0$ Vdc, $f = 1.0$ kHz)		15	120	-
*Small-Signal Current Gain Cutoff Frequency (V _{CE} = 4.0 Vdc, I _C = 1.0 Adc, f = 1.0 kHz)		10	_	kHz

^{*}Indicates Within JEDEC Registration. (2N3055)

^{1.} Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

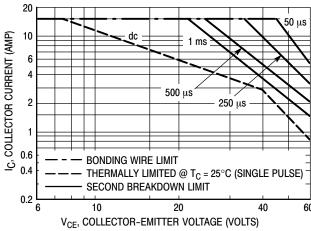
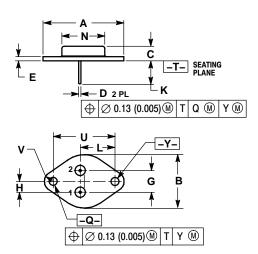


Figure 2. Active Region Safe Operating Area


There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate I_C - V_{CE} limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 2 is based on $T_C = 25^{\circ}C$; $T_{J(pk)}$ is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated for temperature according to Figure 1.

2N3055(NPN), MJ2955(PNP)

PACKAGE DIMENSIONS

TO-204 (TO-3) CASE 1-07 ISSUE Z

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: INCH.

 3. ALL RULES AND NOTES ASSOCIATED WITH REFERENCED TO-204AA OUTLINE SHALL APPLY.

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	1.550 REF		39.37	'REF	
В		1.050		26.67	
С	0.250	0.335	6.35	8.51	
D	0.038	0.043	0.97	1.09	
E	0.055	0.070	1.40	1.77	
G	0.430 BSC		10.92 BSC		
Н	0.215 BSC		5.46 BSC		
K	0.440	0.480	11.18	12.19	
L	0.665 BSC		16.89 BSC		
N		0.830		21.08	
Q	0.151	0.165	3.84	4.19	
U	1.187 BSC		30.15 BSC		
٧	0.131	0.188	3.33	4.77	

STYLE 1: PIN 1. BASE 2. EMITTER CASE: COLLECTOR