MJ21193, MJ21194

Preferred Device

Silicon Power Transistors

The MJ21193 (PNP) and MJ21194 (NPN) utilize Perforated Emitter technology and are specifically designed for high power audio output, disk head positioners and linear applications.

Features

- Total Harmonic Distortion Characterized
- High DC Current Gain $h_{FE} = 25 \text{ Min } @ I_C = 8 \text{ Adc}$
- Excellent Gain Linearity
- High SOA: 2.5 A, 80 V, 1 Second
- Pb-Free Packages are Available*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector–Emitter Voltage	V_{CEO}	250	Vdc
Collector-Base Voltage	V_{CBO}	400	Vdc
Emitter-Base Voltage	V_{EBO}	5	Vdc
Collector–Emitter Voltage – 1.5 V	V_{CEX}	400	Vdc
Collector Current – Continuous Peak (Note 1)	I _C	16 30	Adc
Base Current – Continuous	Ι _Β	5	Adc
Total Power Dissipation @ T _C = 25°C Derate Above 25°C	P _D	250 1.43	W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	- 65 to +200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	0.7	°C/W

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

1. Pulse Test: Pulse Width = 5 μs, Duty Cycle ≤10%. (continued)

ON Semiconductor®

16 AMP COMPLEMENTARY SILICON POWER TRANSISTORS 250 VOLTS, 250 WATTS

MARKING DIAGRAM

TO-204AA (TO-3) CASE 1-07

= 3 or 4

MEXICO = Assembly Location

YY = Year WW = Work Week G = Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping [†]
MJ21193	TO-3	100 Units / Tray
MJ21193G	TO-3 (Pb-Free)	100 Units / Tray
MJ21194	TO-3	100 Units / Tray
MJ21194G	TO-3 (Pb-Free)	100 Units / Tray

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Preferred devices are recommended choices for future use and best overall value.

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MJ21193, MJ21194

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS		•	•		•
Collector–Emitter Sustaining Voltage $(I_C = 100 \text{ mAdc}, I_B = 0)$	V _{CEO(sus)}	250	_	-	Vdc
Collector Cutoff Current $(V_{CE} = 200 \text{ Vdc}, I_B = 0)$	I _{CEO}	-	-	100	μAdc
Emitter Cutoff Current (V _{CE} = 5 Vdc, I _C = 0)	I _{EBO}	-	-	100	μAdc
Collector Cutoff Current (V _{CE} = 250 Vdc, V _{BE(off)} = 1.5 Vdc)	I _{CEX}	-		100	μAdc
SECOND BREAKDOWN					
Second Breakdown Collector Current with Base Forward Biased (V _{CE} = 50 Vdc, t = 1 s (non-repetitive) (V _{CE} = 80 Vdc, t = 1 s (non-repetitive)	I _{S/b}	5 2.5	_ _	_ _	Adc
ON CHARACTERISTICS	•			-	
DC Current Gain $(I_C = 8 \text{ Adc}, V_{CE} = 5 \text{ Vdc})$ $(I_C = 16 \text{ Adc}, I_B = 5 \text{ Adc})$	h _{FE}	25 8		75	
Base–Emitter On Voltage (I _C = 8 Adc, V _{CE} = 5 Vdc)	V _{BE(on)}	-	_	2.2	Vdc
Collector–Emitter Saturation Voltage ($I_C = 8$ Adc, $I_B = 0.8$ Adc) ($I_C = 16$ Adc, $I_B = 3.2$ Adc)	V _{CE(sat)}	- -	_ _	1.4 4	Vdc
DYNAMIC CHARACTERISTICS					
Total Harmonic Distortion at the Output $V_{RMS} = 28.3 \text{ V}$, f = 1 kHz, $P_{LOAD} = 100 \text{ W}_{RMS}$ hFE unmatched	T _{HD}	_	0.8	_	%
(Matched pair h_{FE} = 50 @ 5 A/5 V) h_{FE} matched		_	0.08	_	
Current Gain Bandwidth Product (I _C = 1 Adc, V _{CE} = 10 Vdc, f _{test} = 1 MHz)	f _T	4	_	-	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f _{test} = 1 MHz)	C _{ob}	-	-	500	pF

NOTE: Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2%

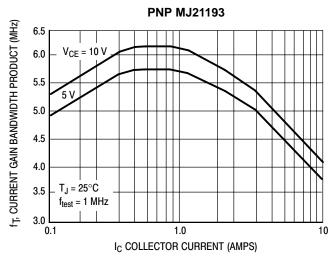
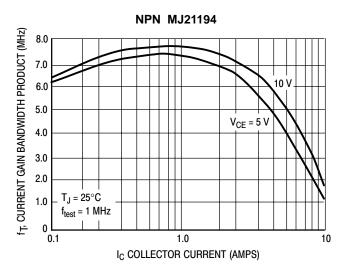
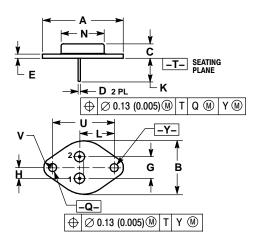


Figure 1. Typical Current Gain Bandwidth Product




Figure 2. Typical Current Gain Bandwidth Product

MJ21193, MJ21194

PACKAGE DIMENSIONS

TO-204AA (TO-3)

CASE 1-07 ISSUE Z

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. ALL RULES AND NOTES ASSOCIATED WITH REFERENCED TO-204AA OUTLINE SHALL APPLY.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	1.550 REF		39.37	REF
В	-	1.050	-	26.67
С	0.250	0.335	6.35	8.51
D	0.038	0.043	0.97	1.09
Е	0.055	0.070	1.40	1.77
G	0.430 BSC		10.92 BSC	
Н	0.215 BSC		5.46 BSC	
K	0.440	0.480	11.18	12.19
L	0.665 BSC		16.89 BSC	
N		0.830		21.08
Q	0.151	0.165	3.84	4.19
U	1.187	BSC	30.15 BSC	
٧	0.131	0.188	3.33	4.77

STYLE 1:
PIN 1. BASE
2. EMITTER
CASE: COLLECTOR