2N6284 (NPN); 2N6286, 2N6287 (PNP)

Preferred Device

Darlington Complementary Silicon Power Transistors

These packages are designed for general-purpose amplifier and low-frequency switching applications.

Features

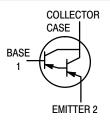
- High DC Current Gain @ $I_C = 10$ Adc $h_{FE} = 2400$ (Typ) 2N6284 = 4000 (Typ) 2N6287
- Collector–Emitter Sustaining Voltage $V_{CEO(sus)} = 100 \text{ Vdc (Min)}$
- Monolithic Construction with Built-In Base-Emitter Shunt Resistors
- Pb-Free Packages are Available*

MAXIMUM RATINGS (Note 1)

Rating		Symbol	Value	Unit
Collector-Emitter Voltage	2N6286 2N6284/87	V _{CEO}	80 100	Vdc
Collector-Base Voltage	2N6286 2N6284/87	V _{CB}	80 100	Vdc
Emitter-Base Voltage		V _{EB}	5.0	Vdc
Collector Current - Continuous Peak		I _C	20 40	Adc
Base Current		ΙΒ	0.5	Adc
Total Power Dissipation @ T _C = 25°C Derate above 25°C		P _D	160 0.915	W W/°C
Operating and Storage Temperature Range		T _J , T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS (Note 1)

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	1.09	°C/W


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Indicates JEDEC Registered Data.

ON Semiconductor®

20 AMPERE COMPLEMENTARY SILICON POWER TRANSISTORS 100 VOLTS, 160 WATTS

TO-204AA (TO-3) CASE 1-07 STYLE 1

MARKING DIAGRAM

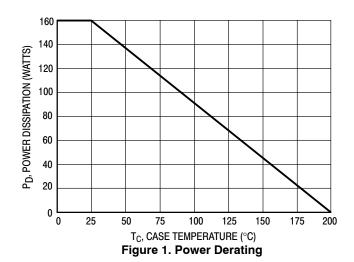
2N628x = Device Code

x = 4, 6 or 7

G = Pb-Free Package A = Location Code

YY = Year

WW = Work Week


MEX = Country of Orgin

ORDERING INFORMATION

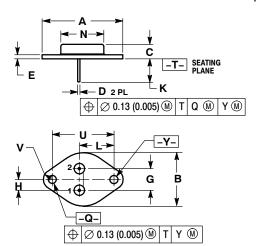
Device	Package	Shipping
2N6284	TO-3	100 Units/Tray
2N6284G	TO-3 (Pb-Free)	100 Units/Tray
2N6286	TO-3	100 Units/Tray
2N6286G	TO-3 (Pb-Free)	100 Units/Tray
2N6287	TO-3	100 Units/Tray
2N6287G	TO-3 (Pb-Free)	100 Units/Tray

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

2N6284 (NPN); 2N6286, 2N6287 (PNP)

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted) (Note 2)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Sustaining Voltage (I _C = 0.1 Adc, I _B = 0)	2N6286 2N6284, 2N6287	V _{CEO(sus)}	80 100	_ _	Vdc
Collector Cutoff Current $(V_{CE} = 40 \text{ Vdc}, I_B = 0)$ $(V_{CE} = 50 \text{ Vdc}, I_B = 0)$		I _{CEO}	- -	1.0 1.0	mAdc
Collector Cutoff Current $(V_{CE} = Rated \ V_{CB}, \ V_{BE(off)} = 1.5 \ Vdc)$ $(V_{CE} = Rated \ V_{CB}, \ V_{BE(off)} = 1.5 \ Vdc, \ T_C = 150^{\circ}C)$		I _{CEX}	- -	0.5 5.0	mAdc
Emitter Cutoff Current $(V_{BE} = 5.0 \text{ Vdc}, I_C = 0)$		I _{EBO}	-	2.0	mAdc
ON CHARACTERISTICS (Note 3)					
DC Current Gain $ \begin{aligned} \text{(I}_{\text{C}} &= 10 \text{ Adc, V}_{\text{CE}} = 3.0 \text{ Vdc)} \\ \text{(I}_{\text{C}} &= 20 \text{ Adc, V}_{\text{CE}} = 3.0 \text{ Vdc)} \end{aligned} $		h _{FE}	750 100	18,000	-
Collector–Emitter Saturation Voltage ($I_C = 10$ Adc, $I_B = 40$ mAdc) ($I_C = 20$ Adc, $I_B = 200$ mAdc)		V _{CE(sat)}	- -	2.0 3.0	Vdc
Base–Emitter On Voltage (I _C = 10 Adc, V _{CE} = 3.0 Vdc)		V _{BE(on)}	-	2.8	Vdc
Base–Emitter Saturation Voltage ($I_C = 20$ Adc, $I_B = 200$ mAdc)		V _{BE(sat)}	_	4.0	Vdc
DYNAMIC CHARACTERISTICS					_
Magnitude of Common Emitter Small–Signal Short–Circuit Forward Current Transfer Ratio (I _C = 10 Adc, V _{CE} = 3.0 Vdc, f = 1.0 MHz)		h _{fe}	4.0	_	MHz
Output Capacitance ($V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 0.1 \text{ MHz}$)	2N6284 2N6286, 2N6287	C _{ob}	- -	400 600	pF
Small-Signal Current Gain (I _C = 10 Adc, V _{CE} = 3.0 Vdc, f = 1.0 kHz)		h _{fe}	300	_	-


^{2.} Indicates JEDEC Registered Data.

^{3.} Pulse test: Pulse Width = 300 μs, Duty Cycle = 2%

2N6284 (NPN); 2N6286, 2N6287 (PNP)

PACKAGE DIMENSIONS

TO-204 (TO-3) CASE 1-07 ISSUE Z

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. ALL RULES AND NOTES ASSOCIATED WITH REFERENCED TO-204AA OUTLINE SHALL APPLY.

	INCHES		MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	1.550 REF		39.37	REF	
В		1.050		26.67	
C	0.250	0.335	6.35	8.51	
D	0.038	0.043	0.97	1.09	
Е	0.055	0.070	1.40	1.77	
G	0.430 BSC		10.92 BSC		
H	0.215 BSC		5.46	46 BSC	
K	0.440	0.480	11.18	12.19	
L	0.665 BSC		16.89	16.89 BSC	
N		0.830		21.08	
Q	0.151	0.165	3.84	4.19	
J	1.187 BSC		30.15	BSC	
٧	0.131	0.188	3.33	4.77	

STYLE 1: PIN 1. BASE 2. EMITTER CASE: COLLECTOR