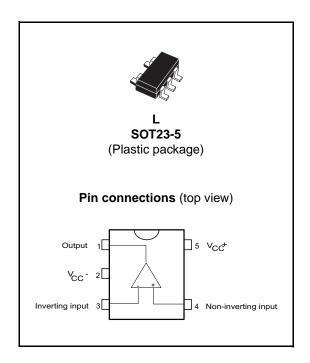


Low power single voltage comparator


Features

- Wide single supply voltage range or dual supplies +2V to +34V or ±1V to ±17V
- Very low supply current (0.2mA) independent of supply voltage (1mW/comparator at +5V)
- Low input bias current: 25nA typ.
- Low input offset current: ±5nA typ.
- Low input offset voltage: ±1 mV typ.
- Input common-mode voltage range includes ground
- Low output saturation voltage: 250mV typ. (I_o= 4mA)
- Differential input voltage range equal to the supply voltage
- TTL, DTL, ECL, CMOS compatible outputs

Description

These devices consist of a low power voltage comparator designed specifically to operate from a single supply over a wide range of voltages. Operation from split power supplies is also possible.

This comparator also has a unique characteristic in that the input common-mode voltage range includes ground even though operated from a single power supply voltage.

2 Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings (AMR)

	· ···· · · · · · · · · · · · · · · · ·		
Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	±18 or 34	V
V _{id}	Differential input voltage	-±34	V
V _i	Input voltage	-0.3 to +34	V
	Output short-circuit to ground ⁽¹⁾	Infinite	
Tj	Maximum junction temperature	150	°C
R _{thja}	Thermal resistance junction to ambient ⁽²⁾	250	°C/W
R _{thjc}	Thermal resistance junction to case (2)	81	°C/W
T _{stg}	Storage temperature range	-65 to +150	°C
ESD	HBM: human body model ⁽³⁾	300	V
ESD	MM: machine model ⁽⁴⁾	200] V

Short-circuits from the output to V_{CC}⁺ can cause excessive heating and potential destruction. The maximum output current is approximately 20mA independent of the magnitude of V_{CC}⁺.

Table 2. Operation conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	2 to 34 ±1 to ±17	V
V _{icm}	Input common mode voltage range $^{(1)}$ $T_{amb} = 25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$	0 to V _{CC} ⁺ -1.5 0 to V _{CC} ⁺ -2	٧
T _{oper}	Operating free air temperature range	-40 to +125	°C

The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V. The
upper end of the common-mode voltage range is V_{CC}⁺ -1.5V, but either or both inputs can go to +30V without damage.

5/

^{2.} Short-circuits can cause excessive heating. These values are typical.

Human body model: A 100pF capacitor is charged to the specified voltage, then discharged through a 1.5kΩ resistor
between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.

Machine model: A 200pF capacitor is charged to the specified voltage, then discharged directly between two pins of the
device with no external series resistor (internal resistor < 5Ω). This is done for all couples of connected pin combinations
while the other pins are floating.

Electrical characteristics TS391

3 Electrical characteristics

Table 3. $V_{CC}^+ = +5V$, $V_{CC}^- = 0V$, $T_{amb} = 25$ °C (unless otherwise specified)

Symbol	Parameter	Test conditions		Тур.	Max.	Unit
V _{io}	Input offset voltage (1)	$T_{min} \le T_{amb} \le T_{max}$		1	5 9	mV
I _{io}	Input offset current	$T_{min} \le T_{amb} \le T_{max}$		5	50 150	nA
I _{ib}	Input bias current (2)	$T_{min} \le T_{amb} \le T_{max}$		25	250 400	nA
A _{vd}	Large signal voltage gain	$V_{CC}^{+} = 15V, R_{L} = 15k\Omega$ $V_{o} = 1 \text{ to } 11V$	50	200		V/mV
I _{CC}	Supply current	V_{CC}^+ = 5V, no load V_{CC}^+ = 30V, no load		0.2 0.5	0.5 1.25	mA
V _{id}	Differential input voltage (3)				V _{CC} ⁺	V
I _{sink}	Output sink current	$V_{id} = -1V, V_{O} = 1.5V$	6	16		mA
V _{OL}	Low level output voltage	$V_{id} = 1V$, $V_{CC}^+ = V_O = 30V$ $T_{min} \le T_{amb} \le T_{max}$		250	400 700	mV
I _{OH}	High level output current	$V_{id} = 1V$, $V_{CC}^+ = V_O = 30V$ $T_{min} \le T_{amb} \le T_{max}$		0.1	1	nΑ μΑ
tre	Small signal response time	$R_L = 5.1 \text{k}\Omega \text{ to } V_{CC}^{+ (4)}$		1.3		μs
t _{rel}	Large signal response time	$V_i = TTL$, $V_{ref} = +1.4V$, $R_L = 5.1k\Omega$ to V_{CC}^+		300		ns

^{1.} At output switch point, $V_0 \approx 1.4V$, $R_S = 0\Omega$ with V_{CC}^+ from 5V to 30V and over the full input common-mode range (0V to V_{CC}^+ -1.5V).

4/8

^{2.} The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output, so there is no loading charge on the reference or input lines.

^{3.} Positive excursions of input voltage may exceed the power supply level. As long as the other voltage remains within the common-mode range, the comparator will provide a proper output state. The low input voltage state must not be less than -0.3V (or 0.3V below the negative power supply, if used).

^{4.} The response time specified is for a 100mV input step with 5mV overdrive. For larger overdrive signals, 300ns can be obtained.

Package information TS391

4 **Package information**

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at:

e1 Ε1

Figure 7. SOT23-5L package mechanical drawing

Table 4. SOT23-5L package mechanical data

		Dimensions				
Ref.		Millimeters			Mils	
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	0.90		1.45	35.4		57.1
A1	0.00		0.15	0.00		5.9
A2	0.90		1.30	35.4		51.2
b	0.35		0.50	13.7		19.7
С	0.09		0.20	3.5		7.8
D	2.80		3.00	110.2		118.1
Е	2.60		3.00	102.3		118.1
E1	1.50		1.75	59.0		68.8
е		0.95			37.4	
e1		1.9			74.8	
L	0.35		0.55	13.7		21.6

6/8

TS391 Ordering information

5 Ordering information

Table 5. Order codes

Part number	Temperature range	Package	Packaging	Marking
TS391ILT	SOT23-5L		K511	
TS391IYLT ⁽¹⁾	-40°C, +125°C	SOT23-5L (Automotive grade)	Tape & reel	K510

Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent are on-going.