#### MSA-0386

### >6V Fixed Gain, 10 dBm General Purpose Amplifier

#### Description



#### Lifecycle status: Active



#### Features

The MSA-03 is a general purpose cascadable 50ohm 10dBm gain block targeted for narrow and wide bandwidth IF amplifier applications. It is offered in a wide variety of plastic and ceramic packages. Bias: 7V, 35mA; f3dB = 2.8GHz; G = 12.5dB; NF = 6dB; P1dB = 10dBm; IP3i = 7.5dBm

## MSA-0386

# Cascadable Silicon Bipolar MMIC Amplifier

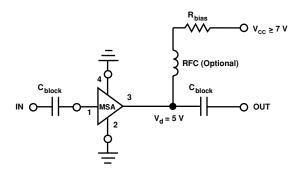


## **Data Sheet**

### **Description**

The MSA-0386 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a low cost, surface mount plastic package. This MMIC is designed for use as a general purpose  $50\Omega$  gain block. Typical applications include narrow and broad band IF and RF amplifiers in commercial and industrial applications.

The MSA-series is fabricated using Avago's 10 GHz  $\rm f_{T}$ , 25 GHz  $\rm f_{MAX}$ , silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.


#### **Features**

- · Lead-free Option Available
- Cascadable  $50\Omega$  Gain Block
- · 3 dB Bandwidth: DC to 2.4 GHz
- 12.0 dB Typical Gain at 1.0 GHz
- 10.0 dBm Typical P<sub>1 dB</sub> at 1.0 GHz
- Unconditionally Stable (k>1)
- · Surface Mount Plastic Package
- Tape-and-Reel Packaging Option Available

### **86 Plastic Package**



### **Typical Biasing Configuration**



## **MSA-0386 Absolute Maximum Ratings**

| Parameter                          | Absolute Maximum <sup>[1]</sup> |
|------------------------------------|---------------------------------|
| Device Current                     | 70 mA                           |
| Power Dissipation <sup>[2,3]</sup> | 400 mW                          |
| RF Input Power                     | +13 dBm                         |
| Junction Temperature               | 150°C                           |
| Storage Temperature                | −65 to 150°C                    |

| Thermal Resistance <sup>[2]</sup> :     |  |
|-----------------------------------------|--|
| $\theta_{\rm jc} = 115^{\circ}{ m C/W}$ |  |

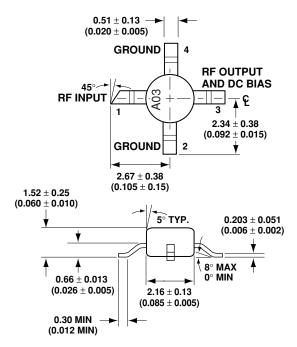
#### **Notes:**

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2.  $T_{CASE} = 25$ °C.
- 3. Derate at 9.5 mW/°C for  $T_{\rm C} > 116 ^{\circ}{\rm C}.$

# Electrical Specifications $^{[1]}$ , ${\rm T_A}=25^{\circ}{\rm C}$

| Symbol                  | Parameters and Test Conditions: $I_{d}$ = 35 mA, $Z_{0}$ = 50 $\Omega$ |                       | Units | Min. | Тур.  | Max. |
|-------------------------|------------------------------------------------------------------------|-----------------------|-------|------|-------|------|
| GP                      | Power Gain $( S_{21} ^2)$                                              | f = 0.1  GHz          | dB    |      | 12.5  |      |
|                         |                                                                        | f = 1.0  GHz          |       | 10.0 | 12.0  |      |
| $\Delta G_{\mathrm{P}}$ | Gain Flatness                                                          | f = 0.1  to  1.6  GHz | dB    |      | ±0.7  |      |
| f3 dB                   | 3 dB Bandwidth                                                         |                       | GHz   |      | 2.4   |      |
| VSWR                    | Input VSWR                                                             | f = 0.1  to  3.0  GHz |       |      | 1.5:1 |      |
| VSWIL                   | Output VSWR                                                            | f = 0.1  to  3.0  GHz |       |      | 1.7:1 |      |
| NF                      | $50~\Omega$ Noise Figure                                               | f = 1.0  GHz          | dB    |      | 6.0   |      |
| P <sub>1 dB</sub>       | Output Power at 1 dB Gain Compression                                  | f = 1.0 GHz           | dBm   |      | 10.0  |      |
| IP3                     | Third Order Intercept Point                                            | f = 1.0 GHz           | dBm   |      | 23.0  |      |
| tD                      | Group Delay                                                            | f = 1.0  GHz          | psec  |      | 140   |      |
| $V_{d}$                 | Device Voltage                                                         |                       | V     | 4.0  | 5.0   | 6.0  |
| dV/dT                   | Device Voltage Temperature Coefficient                                 |                       | mV/°C |      | -8.0  |      |

#### Note:


## **Ordering Information**

| Part Numbers  | No. of Devices | Comments |  |  |
|---------------|----------------|----------|--|--|
| MSA-0386-BLK  | 100            | Bulk     |  |  |
| MSA-0386-BLKG | 100            | Bulk     |  |  |
| MSA-0386-TR1  | 1000           | 7" Reel  |  |  |
| MSA-0386-TR1G | 1000           | 7" Reel  |  |  |
| MSA-0386-TR2  | 4000           | 13" Reel |  |  |
| MSA-0386-TR2G | 4000           | 13" Reel |  |  |

**Note:** Order part number with a "G" suffix if lead-free option is desired.

<sup>1.</sup> The recommended operating current range for this device is 20 to 40 mA. Typical performance as a function of current is on the following page.

## **86 Plastic Package Dimensions**



**DIMENSIONS ARE IN MILLIMETERS (INCHES)** 

