
Products > RF ICs/Discretes > RF ICs > GaAs Amplifiers, Mixers, Switches > MGA-82563

MGA-82563

3V Driver Amplifier, 17dBm P1dB, Low Noise, 0.1-6GHz, SOT363(SC-70)

MGA-82563 0.1–6 GHz 3 V, 17 dBm Amplifier

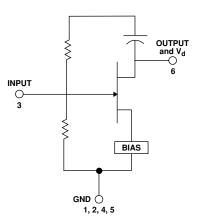
Data Sheet

Description

Avago's MGA-82563 is an economical, easy-to-use GaAs MMIC amplifier that offers excellent power and low noise figure for applications from 0.1 to 6 GHz. Packaged in an ultra-miniature SOT-363 package, it requires half the board space of a SOT-143 package.

The input and output of the amplifier are matched to 50Ω (below 2:1 VSWR) across the entire bandwidth, eliminating the expense of external matching. The amplifier allows a wide dynamic range by offering a 2.2 dB NF coupled with a +31 dBm Output IP₃.

The circuit uses state-of-the-art PHEMT technology with proven reliability. On-chip bias circuitry allows operation from a single +3 V power supply, while resistive feedback ensures stability (K>1) over all frequencies and temperatures.


Features

- Lead-free Option Available
- +17.3 dBm P_{1 dB} at 2.0 GHz
- +20 dBm P_{sat} at 2.0 GHz
- Single +3V Supply
- 2.2 dB Noise Figure at 2.0 GHz
- 13.2 dB Gain at 2.0 GHz
- Ultra-miniature Package
- · Unconditionally Stable

Applications

- Buffer or Driver Amp for PCS, PHS, ISM, SATCOM and WLL Applications
- High Dynamic Range LNA

Simplified Schematic

Pin Connections and Package Marking

Note: Package marking provides orientation and identification. "82" = Device Code

"x" = Date code character identifies month of manufacture

Attention:

Observe precautions for handling electrostatic sensitive devices.

ESD Machine Model (Class A)

ESD Human Body Model (Class 0)

Refer to Avago Application Note A004R: Electrostatic Discharge Damage and Control.

2	

Symbol	Parameter	Units	Absolute Maximum ^[1]
V _d	Device Voltage, RF Output to Ground	V	5.0
V_{gd}	Device Voltage, Gate to Drain	V	-6.0
V _{in}	Range of RF Input Voltage to Ground	V	+0.5 to -1.0
P _{in}	CW RF Input Power	dBm	+13
T _{ch}	Channel Temperature	°C	165
T _{STG}	Storage Temperature	°C	-65 to 150

MGA-82563 Absolute Maximum Ratings

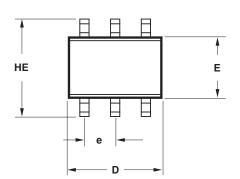
Thermal I	Resistance ^[2] :
------------------	-----------------------------

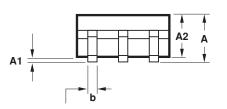
 $\theta_{ch-c} = 180^{\circ}C/W$

Notes:

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_C = 25^{\circ}C$ (T_C is defined to be the temperature at the top of the package.)

MGA-82563 Electrical Specifications, $T_c = 25^{\circ}C$, $Z_0 = 50 \Omega$, $V_d = 3 V$

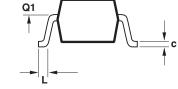

Symbol	Parameters and Test Conditions		Units	Min.	Тур.	Max.	Std Dev ^[2]
G _{test}	Gain in test circuit ^[1]	f = 2.0 GHz		12.0	13.2	15	0.35
NFtest	Noise Figure in test circuit ^[1]	f = 2.0 GHz			2.2	2.9	0.20
NF ₅₀	Noise Figure in 50 Ω system	f = 0.5 GHz f = 1.0 GHz f = 2.0 GHz f = 3.0 GHz f = 4.0 GHz f = 6.0 GHz	dB		2.3 2.2 2.2 2.2 2.2 2.4 2.7		0.20
S ₂₁ ²	Gain in 50 Ω system	f = 0.5 GHz f = 1.0 GHz f = 2.0 GHz f = 3.0 GHz f = 4.0 GHz f = 6.0 GHz	dB		14.7 14.5 13.5 12.1 10.7 8.8		0.35
P _{1 dB}	Output Power at 1 dB Gain Compression	f = 0.5 GHz f = 1.0 GHz f = 2.0 GHz f = 3.0 GHz f = 4.0 GHz f = 6.0 GHz	dBm		17.4 17.5 17.3 17.1 17.0 16.8		0.54
IP ₃	Output Third Order Intercept Point	f = 2.0 GHz	dBm		+31		1.0
VSWRin	Input VSWR	f = 0.2 - 5.0 GHz			1.8:1		
VSWRout	Output VSWR	f = 0.2 - 5.0 GHz			1.2:1		
I _d	Device Current		mA	63	84	101	


Notes:

1. Guaranteed specifications are 100% tested in the circuit in Figure 10 in the Applications Information section.

2. Standard deviation number is based on measurement of at least 500 parts from three non-consecutive wafer lots during the initial characterization of this product, and is intended to be used as an estimate for distribution of the typical specification.

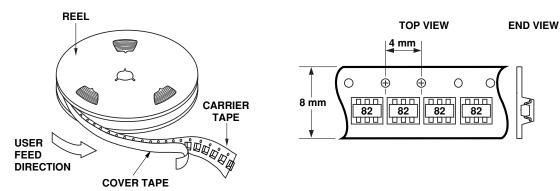
Package Dimensions Outline 63 (SOT-363/SC-70)



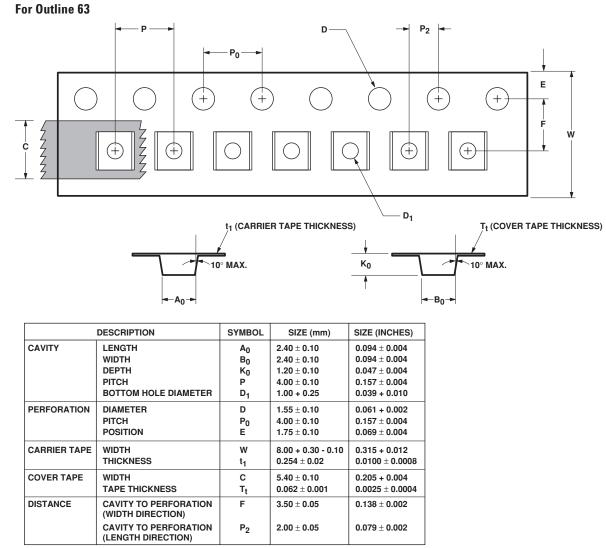
	DIMENSIONS (mm)		
SYMBOL	MIN.	MAX.	
E	1.15	1.35	
D	1.80	2.25	
HE	1.80	2.40	
Α	0.80	1.10	
A2	0.80	1.00	
A1	0.00	0.10	
Q1	0.10	0.40	
е	0.650 BCS		
b	0.15	0.30	
с	0.10	0.20	
L	0.10	0.30	

Part Number Ordering Information

Part Number	No. of Devices	Container
MGA-82563-TR1	3000	7" Reel
MGA-82563-BLK	100	antistatic bag


NOTES:

- 1. All dimensions are in mm.
- 2. Dimensions are inclusive of plating.
- Dimensions are exclusive of moldflash & metal burr.
 All specifications comply to EIAJ SC70.


1

- 5. Die is facing up for mold and facing down for trim/form,
 - ie: reverse trim/form.
- 6. Package surface to be mirror finish.

Device Orientation

10

Tape Dimensions and Product Orientation

