Products > RF ICs/Discretes > RF ICs > GaAs Amplifiers, Mixers, Switches > MGA-81563

MGA-81563

3V Driver Amplifier, 14dBm P1dB, Low Noise, 0.1-6GHz, SOT363(SC-70)

MGA-81563 0.1–6 GHz 3 V, 14 dBm Amplifier

Data Sheet

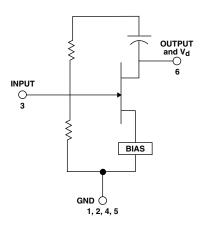
Description

Avago's MGA-81563 is an economical, easy-to-use GaAs MMIC amplifier that offers excellent power and low noise figure for applications from 0.1 to 6 GHz. Packaged in an ultra-miniature SOT-363 package, it requires half the board space of a SOT-143 package.

The output of the amplifier is matched to 50Ω (better than 2.1:1 VSWR) across the entire bandwidth. The input is partially matched to 50Ω (better than 2.5:1 VSWR) below 4 GHz and fully matched to 50Ω (better than 2:1 VSWR) above. A simple series inductor can be added to the input to improve the input match below 4 GHz. The amplifier allows a wide dynamic range by offering a 2.7 dB NF coupled with a +27 dBm Output IP₃.

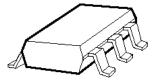
The circuit uses state-of-the-art PHEMT technology with proven reliability. On-chip bias circuitry allows operation from a single +3 V power supply, while resistive feedback ensures stability (K>1) over all frequencies and temperatures.

Surface Mount Package: SOT-363 (SC-70)

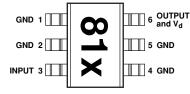

Features

- Lead-free Option Available
- +14.8 dBm P_{1dB} at 2.0 GHz
 +17 dBm P_{sat} at 2.0 GHz
- Single +3V Supply
- 2.8 dB Noise Figure at 2.0 GHz
- 12.4 dB Gain at 2.0 GHz
- Ultra-miniature Package
- Unconditionally Stable

Applications


- Buffer or Driver Amp for PCS, PHS, ISM, SATCOM and WLL Applications
- High Dynamic Range LNA

Simplified Schematic



Attention: Observe precautions for handling electrostatic sensitive devices. ESD Machine Model (Class A) ESD Human Body Model (Class 0) Refer to Avago Application Note A004R: Electrostatic Discharge Damage and Control.

Pin Connections and Package Marking

Note: Package marking provides orientation and identification. "81" = Device Code

"x" = Date code character identifies month of manufacture

MGA-81563 Absolute Maximum Ratings

Symbol	Parameter	Units	Absolute Maximum ^[1]
V _d	Device Voltage, RF Output to Ground	V	6.0
V _{gd}	Device Voltage, Gate to Drain	V	-6.0
V _{in}	Range of RF Input Voltage to Ground	V	+0.5 to -1.0
P _{in}	CW RF Input Power	dBm	+13
T _{ch}	Channel Temperature	°C	165
T _{stg}	Storage Temperature	°C	-65 to 150

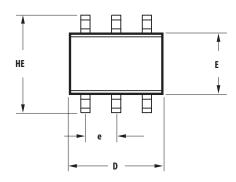
Thermal Resistance^[2]:
$$\theta_{cb-c} = 220^{\circ}C/W$$

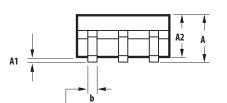
Notes:

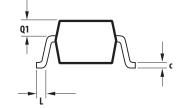
- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_c = 25^{\circ}C$ (T_c is defined to be the temperature at the package pins where contact is made to the circuit board.)

MGA-81563 Electrical Specifications, TC = 25°C, ZO = 50 Ω , Vd = 3 V

Symbol	Parameters and Test Conditions		Units	Min.	Тур.	Max.	Std Dev ^[2]
Gtest	Gain in test circuit ^[1]	f = 2.0 GHz		10.5	12.4	14.5	0.44
NFtest	Noise Figure in test circuit ^[1]	f = 2.0 GHz			2.8	3.8	0.21
NF50	Noise Figure in 50 Ω system	f = 0.5 GHz	dB		3.1		0.21
		f = 1.0 GHz			3.0		
		f = 2.0 GHz			2.7		
		f = 3.0 GHz			2.7		
		f = 4.0 GHz			2.8		
		f = 6.0 GHz			3.5		
S21 2	Gain in 50 Ω system	f = 0.5 GHz	dB		12.5		0.44
		f = 1.0 GHz			12.5		
		f = 2.0 GHz			12.3		
		= 3.0 GHz			11.8		
		f = 4.0 GHz			11.4		
		f = 6.0 GHz			10.2		
P _{1 dB}	Output Power at 1 dB Gain Compression	f = 0.5 GHz	dBm		15.1		0.86
1 40		f = 1.0 GHz			14.8		
		f = 2.0 GHz			14.8		
		f = 3.0 GHz			14.8		
		f = 4.0 GHz			14.8		
		f = 6.0 GHz			14.7		
IP ₃	Output Third Order Intercept Point	f = 2.0 GHz	dBm		+27		1.0
VSWR _{in}	Input VSWR	f = 2.0 GHz			2.7:1		
VSWR _{out}	Output VSWR	f = 2.0 GHz			2.0:1		
l _d	Device Current		mA	31	42	51	


Notes:

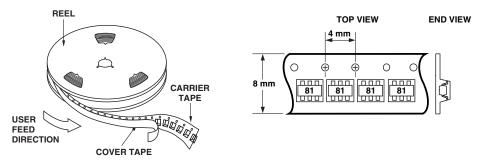

1. Guaranteed specifications are 100% tested in the circuit in Figure 10 in the Applications Information section.


2. Standard deviation number is based on measurement of at least 500 parts from three non-consecutive wafer lots during the initial characterization of this product, and is intended to be used as an estimate for distribution of the typical specification.

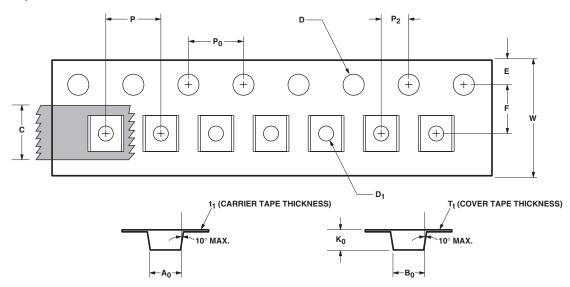
Package Dimensions

Outline 63 (SOT-363/SC-70)

	DIMENSIONS (mm)		
SYMBOL	MIN.	MAX.	
E	1.15	1.35	
D	1.80	2.25	
HE	1.80	2.40	
A	0.80	1.10	
A2	0.80	1.00	
A1	0.00	0.10	
Q1	0.10	0.40	
e	0.650 BCS		
b	0.15	0.30	
c	0.10	0.20	
L	0.10	0.30	


NOTES: 1. All dimensions are in mm. 2. Dimensions are inclusive of plating.

- 3. Dimensions are exclusive of mold flash & metal burr.
- All specifications comply to EIAJ SC70.
 Die is facing up for mold and facing down for trim/form,
- ie: reverse trim/form.
- 6. Package surface to be mirror finish.


Part Number Ordering Information

	No. of	
Part Number	Devices	Container
MGA-81563-TR1G	3000	7" Reel
MGA-81563-TR2G	10000	13" Reel
MGA-81563-BLKG	100	antistatic bag

Device Orientation

Tape Dimensions and Product Orientation for Outline 63

DESCRIPTION		SYMBOL	SIZE (mm)	SIZE (INCHES)
CAVITY	LENGTH WIDTH DEPTH PITCH BOTTOM HOLE DIAMETER	A ₀ B ₀ K ₀ P D ₁	$\begin{array}{c} 2.40 \pm 0.10 \\ 2.40 \pm 0.10 \\ 1.20 \pm 0.10 \\ 4.00 \pm 0.10 \\ 1.00 + 0.25 \end{array}$	0.094 ± 0.004 0.094 ± 0.004 0.047 ± 0.004 0.157 ± 0.004 0.039 + 0.010
PERFORATION	DIAMETER PITCH POSITION	D P ₀ E	$\begin{array}{c} 1.55 \pm 0.10 \\ 4.00 \pm 0.10 \\ 1.75 \pm 0.10 \end{array}$	0.061 + 0.002 0.157 ± 0.004 0.069 ± 0.004
CARRIER TAPE	WIDTH THICKNESS	w t ₁	8.00 + 0.30 - 0.10 0.254 ± 0.02	0.315 + 0.012 0.0100 ± 0.0008
COVER TAPE	WIDTH TAPE THICKNESS	C T _t	$\begin{array}{c} \textbf{5.40} \pm \textbf{0.10} \\ \textbf{0.062} \pm \textbf{0.001} \end{array}$	0.205 + 0.004 0.0025 ± 0.0004
DISTANCE	CAVITY TO PERFORATION (WIDTH DIRECTION) CAVITY TO PERFORATION (LENGTH DIRECTION)	F P ₂	$\begin{array}{c} \textbf{3.50} \pm \textbf{0.05} \\ \textbf{2.00} \pm \textbf{0.05} \end{array}$	$\begin{array}{c} \textbf{0.138} \pm \textbf{0.002} \\ \textbf{0.079} \pm \textbf{0.002} \end{array}$

