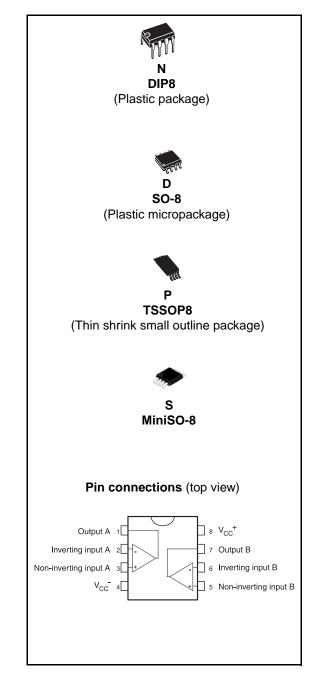


LM2904

Low power dual operational amplifier

Features


- Internally frequency compensated
- Large DC voltage gain: 100 dB
- Wide bandwidth (unity gain): 1.1 MHz (temperature compensated)
- Very low supply current/op (500 µA) essentially independent of supply voltage
- Low input bias current: 20 nA (temperature compensated)
- Low input offset current: 2 nA
- Input common-mode voltage range includes negative rail
- Differential input voltage range equal to the power supply voltage
- Large output voltage swing 0 V to (V_{CC}⁺ -1.5 V)

Description

This circuit consists of two independent, high gain, internally frequency compensated operational amplifiers which were designed specifically for automotive and industrial control system. It operates from a single power supply over a wide range of voltages. The low power supply drain is independent of the magnitude of the power supply voltage.

Application areas include transducer amplifiers, DC gain blocks and all the conventional op-amp circuits which now can be more easily implemented in single power supply systems. For example, these circuits can be directly supplied from the standard +5 V which is used in logic systems and will easily provide the required interface electronics without requiring any additional power supply.

In the linear mode the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from a single power supply.

2 Absolute maximum ratings and operating conditions

able 1.	Absolute maximum ratings (AMR)						
Symbol	Parameter	Value	Unit V				
V _{CC}	Supply voltage ⁽¹⁾	±16 or 32					
V _{id}	Differential input voltage ⁽²⁾	±32	V				
V _{in}	Input voltage	-0.3 to 32	V				
	Output short-circuit duration (3)	Infinite	S				
l _{in}	Input current ⁽⁴⁾	50	mA				
T _{oper}	Operating free-air temperature range	-40 to +125	°C				
T _{stg}	Storage temperature range	-65 to +150	°C				
Тj	Maximum junction temperature	150	°C				
R _{thja}	Thermal resistance junction to ambient ⁽⁵⁾ SO-8 TSSOP8 DIP8 MiniSO-8	125 120 85 190	°C/W				
R _{thjc}	Thermal resistance junction to case ⁽⁵⁾ SO-8 TSSOP8 DIP8 MiniSO-8	40 37 41 39	°C/W				
	HBM: human body model ⁽⁶⁾	300	V				
ESD	MM: machine model ⁽⁷⁾	200	V				
	CDM: charged device model ⁽⁸⁾	1.5	kV				

Table 1. Absolute maximum ratings (AMR)

1. All voltage values, except differential voltage are with respect to network ground terminal.

- 2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
- Short-circuits from the output to V_{CC} can cause excessive heating if Vcc⁺ > 15 V. The maximum output current is approximately 40 mA, independent of the magnitude of V_{CC}. Destructive dissipation can result from simultaneous short-circuits on all amplifiers.
- 4. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistor becoming forward biased and thereby acting as input diodes clamps. In addition to this diode action, there is also NPN parasitic action on the IC chip. This transistor action can cause the output voltages of the op-amps to go to the V_{CC} voltage level (or to ground for a large overdrive) for the time duration than an input is driven negative. This is not destructive and normal output will set up again for input voltage higher than -0.3 V.
- 5. Short-circuits can cause excessive heating and destructive dissipation. Values are typical.
- Human body model: A 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
- Machine model: A 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating.
- 8. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins.

	operaning containente		
Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	3 to 30	V
V _{icm}	Common mode input voltage range	V _{CC} ⁺ - 1.5	V
T _{oper}	Operating free-air temperature range	-40 to +125	°C

Table 2. Operating conditions

3 Electrical characteristics

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{io}	Input offset voltage ⁽¹⁾ $T_{amb} = 25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$		2	7 9	mV
DVio	Input offset voltage drift		7	30	µV/°C
I _{io}	Input offset current $T_{amb} = 25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$		2	30 40	nA
DI _{io}	Input offset current drift		10	300	pA/°C
l _{ib}	Input bias current ⁽²⁾ $T_{amb} = 25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$		20	150 200	nA
A _{vd}	Large signal voltage gain V_{CC}^+ = +15V,R _L =2k Ω V _o = 1.4V to 11.4V T_{amb} = 25°C $T_{min} \le T_{amb} \le T_{max}$	50 25	100		V/mV
SVR	Supply voltage rejection ratio ($R_S \le 10k\Omega$) $T_{amb} = 25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$	65 65	100		dB
I _{CC}	Supply current, all amp, no load $T_{amb} = 25^{\circ}C, V_{CC}^{+} = +5V$ $T_{min} \le T_{amb} \le T_{max}, V_{CC}^{+} = +30V$		0.7	1.2 2	mA
V _{icm}	Input common mode voltage range (V _{CC} ⁺ = +30V) $^{(3)}$ T _{amb} = 25°C T _{min} \leq T _{amb} \leq T _{max}	0 0		V _{CC} ⁺ -1.5 V _{CC} ⁺ -2	V
CMR	Common-mode rejection ratio ($R_S = 10k\Omega$) $T_{amb} = 25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$	70 60	85		dB
I _{source}	Output short-circuit current V_{CC}^+ = +15V, V_o = +2V, V_{id} = +1V	20	40	60	mA
I _{sink}	Output sink current $V_O = 2V, V_{CC}^+ = +5V$ $V_O = +0.2V, V_{CC}^+ = +15V$	10 12	20 50		mA μA
V _{OH}		26 26 27 27	27 28		V
V _{OL}	Low level output voltage ($R_L = 10k\Omega$) $T_{amb} = +25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$		5	20 20	mV

Table 3.	V_{CC}^+ = 5V, V_{CC}^- = Ground, V_0 = 1.4V, T_{amb} = 25°C (unless otherwise specified)
----------	---

6/22

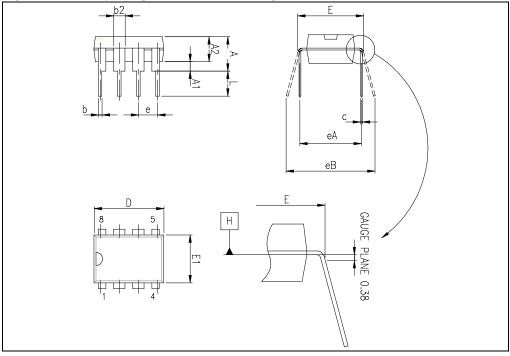
57

Symbol	Parameter	Min.	Тур.	Max.	Unit	
SR	Slew rate V_{CC}^+ = 15V, V_{in} = 0.5 to 3V, R_L = 2k Ω , C_L = 100pF, unity gain $T_{min} \le T_{amb} \le T_{max}$	0.3 0.2	0.6		V/µs	
GBP	Gain bandwidth product f = 100kHz V_{CC}^+ = 30V, V_{in} = 10mV, R_L = 2k Ω , C_L = 100pF	0.7	1.1		MHz	
THD	Total harmonic distortion $f = 1 \text{ kHz}, A_V = 20 \text{ dB}, R_L = 2 \text{ k}\Omega, V_o = 2 \text{ V}_{pp},$ $C_L = 100 \text{ pF}, \text{ V}_{CC}^+ = 30 \text{ V}$		0.02		%	
e _n	Equivalent input noise voltage f = 1kHz, $R_S = 100\Omega V_{CC}^+ = 30V$		55		nV/√Hz	
V ₀₁ /V ₀₂	Channel separation ⁽⁴⁾ 1kHz ≤ f ≤ 20kHz		120		dB	

Table 3. $V_{CC}^+ = 5V, V_{CC}^- =$ Ground, $V_O = 1.4V, T_{amb} = 25^{\circ}C$ (unless otherwise specified)

1. $V_O = 1.4V, R_S = 0\Omega, 5V < V_{CC}^+ < 30V, 0V < V_{ic} < V_{CC}^+ - 1.5V.$

2. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output, so there is no change in the loading charge on the input lines.


 The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common-mode voltage range is V_{CC}⁺ –1.5 V, but either or both inputs can go to +32 V without damage.

4. Due to the proximity of external components ensure that stray capacitance does not cause coupling between these external parts. This typically can be detected at higher frequencies because this type of capacitance increases.

5.1 DIP8 package information

Figure 26. DIP8 package mechanical drawing

Table 4. DIP8 package mechanical data

			Dimer	nsions		
Ref.	Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А			5.33			0.210
A1	0.38			0.015		
A2	2.92	3.30	4.95	0.115	0.130	0.195
b	0.36	0.46	0.56	0.014	0.018	0.022
b2	1.14	1.52	1.78	0.045	0.060	0.070
с	0.20	0.25	0.36	0.008	0.010	0.014
D	9.02	9.27	10.16	0.355	0.365	0.400
E	7.62	7.87	8.26	0.300	0.310	0.325
E1	6.10	6.35	7.11	0.240	0.250	0.280
е		2.54			0.100	
eA		7.62			0.300	
eB			10.92			0.430
L	2.92	3.30	3.81	0.115	0.130	0.150

57

6 Ordering information

Order code	Temperature range	Package	Packing	Marking
LM2904N		DIP8	Tube	LM2904N
LM2904D/DT		SO-8	Tube or tape & reel	2904
LM2904PT		TSSOP8 (Thin shrink outline package)	Tape & reel	2904
LM2904ST	-40°C to +125°C	MiniSO-8	Tape & reel	K403
LM2904YD ⁽¹⁾ LM2904YDT ⁽¹⁾		SO-8 (Automotive grade level)	Tube or tape & reel	2904Y
LM2904YPT ⁽²⁾		TSSOP8 (Automotive grade level)	Tape & reel	23041
LM2904YST ⁽²⁾		MiniSO-8 (Automotive grade level)	Tape & reel	K409

1. Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent.

2. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent are on-going.