

LM2902

Low power quad operational amplifier

Features

- Wide gain bandwidth: 1.3MHz
- Input common-mode voltage range includes negative rail
- Large voltage gain: 100dB
- Very low supply current per amp: 375µA
- Low input bias current: 20nA
- Low input offset current: 2nA
- Wide power supply range:
 - Single supply: +3V to +30V
 - Dual supplies: ±1.5V to ±15V

Description

This circuit consists of four independent, high gain, internally frequency compensated operational amplifiers designed especially for automotive and industrial control systems.

It operates from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage.

2 Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage ⁽¹⁾	±16 to 33	V
V _{id}	Differential input voltage ⁽²⁾	+32	V
V _{in}	Input voltage	-0.3 to +32	V
	Output short-circuit duration ⁽³⁾	Infinite	S
Тj	Maximum junction temperature	150	°C
l _{in}	Input current ⁽⁴⁾	50	mA
T _{stg}	Storage temperature range	-65 to +150	°C
R _{thja}	Thermal resistance junction to ambient ⁽⁵⁾ SO-14 TSSOP14 DIP14	105 100 80	°C/W
R _{thjc}	Thermal resistance junction to case ⁽⁵⁾ SO-14 TSSOP14 DIP14	31 32 33	°C/W
	HBM: human body model ⁽⁶⁾	370	V
ESD	MM: machine model ⁽⁷⁾	150	V
	CDM: charged device model ⁽⁸⁾	1500	V

Table 1. Absolute maximum ratings (AMR)

1. All voltage values, except differential voltage are with respect to network ground terminal.

2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.

- 3. Short-circuit from the output to V_{CC}^+ can cause excessive heating and eventual destruction. The maximum output current is approximately 20mA, independent of the magnitude of V_{CC}^+ .
- 4. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistor becoming forward biased and thereby acting as input diodes clamps. In addition to this diode action, there is also NPN parasitic action on the IC chip. This transistor action can cause the output voltages of the op-amps to go to the V_{CC} voltage level (or to ground for a large overdrive) for the time duration than an input is driven negative. This is not destructive and normal output will set up again for input voltage higher than -0.3V.
- 5. $R_{thja/c}$ are typical values.
- Human body model: A 100pF capacitor is charged to the specified voltage, then discharged through a 1.5kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
- Machine model: A 200pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5Ω). This is done for all couples of connected pin combinations while the other pins are floating.
- Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins.

3 Operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	3 to 30	V
V _{icm}	Common mode input voltage range $T_{min} \leq T_{amb} \leq T_{max}$	V _{CC} ⁺ - 1.5 V _{CC} ⁺ -2	V
T _{oper}	Operating free-air temperature range	-40 to +125	°C

Table 2. Operating conditions

4 Electrical characteristics

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{io}	Input offset voltage ⁽¹⁾ T _{min} ≤ T _{amb} ≤ T _{max}		2	7 9	mV
DVio	Input offset voltage drift		7	30	µV/°C
I _{io}	Input offset current T _{min} ≤ T _{amb} ≤ T _{max}		2	30 40	nA
DI _{io}	Input offset current drift		10	200	pA/°C
I _{ib}	Input bias current ⁽²⁾ $T_{min} \le T_{amb} \le T_{max}$		20	150 300	nA
A _{vd}	Large signal voltage gain V_{CC}^+ = +15V, R _L =2k Ω V _o = 1.4V to 11.4V $T_{min} \leq T_{amb} \leq T_{max}$	50 25	100		V/mV
SVR	Supply voltage rejection ratio ($R_S \le 10k\Omega$) $T_{min} \le T_{amb} \le T_{max}$	65 65	110		dB
I _{cc}	Supply current, all amps, no load $V_{CC}^+ = +5V$ $V_{CC}^+ = +30V$ $T_{min} \le T_{amb} \le T_{max}$ $V_{CC}^+ = +5V$ $V_{CC}^+ = +30V$		0.7 1.5 0.8 1.5	1.2 3 1.2 3	mA
CMR	Common-mode rejection ratio ($R_S \le 10k\Omega$) $T_{min} \le T_{amb} \le T_{max}$	70 60	80		dB
۱ ₀	Output short-circuit current ($V_{id} = +1V$) $V_{CC}^+ = +15V$, $V_o = +2V$	20	40	70	mA
I _{sink}	Output sink current ($V_{id} = -1V$) $V_{CC}^{+} = +15V$, $V_{o} = +2V$ $V_{CC}^{+} = +15V$, $V_{o} = +0.2V$	10 12	20 50		mA μA
V _{ОН}	High level output voltage $V_{CC}^{+} = +30V$ $R_{L} = 2k\Omega$ $T_{min} \le T_{amb} \le T_{max}$ $R_{L} = 10k\Omega$ $T_{min} \le T_{amb} \le T_{max}$ $V_{CC}^{+} = +5V, R_{L} = 2k\Omega$ $T_{min} \le T_{amb} \le T_{max}$	26 26 27 27 3 3.5	27 28		V
V _{OL}	Low level output voltage ($R_L = 10k\Omega$) $T_{min} \le T_{amb} \le T_{max}$		5	20 20	mV
SR	Slew rate V_{CC}^+ = 15V, V_{in} = 0.5 to 3V, R_L = 2k Ω , C_L = 100pF, unity gain		0.4		V/µs

Table 3.	$V_{CC}^{+} = 5V$, $V_{CC}^{-} =$ Ground, $V_{o} = 1.4V$, $T_{amb} = 25^{\circ}C$ (unless otherwise specified)
Table 5.	$v_{CC} = 5v$, $v_{CC} = 6100100$, $v_0 = 1.4v$, $r_{amb} = 25$ C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit
GBP	Gain bandwidth product V_{CC}^+ = 30V, V_{in} = 10mV, R_L = 2k Ω , C_L = 100pF		1.3		MHz
THD	Total harmonic distortion $f = 1 \text{ Hz}, A_V = 20 \text{ dB}, R_L = 2 \text{ k}\Omega, V_o = 2 \text{ V}_{pp},$ $C_L = 100 \text{ pF}, \text{ V}_{CC}^+ = 30 \text{ V}$		0.015		%
e _n	Equivalent input noise voltage $f = 1 \text{ HHz}, R_S = 100 \Omega V_{CC}^+ = 30 V$		40		$\frac{nV}{\sqrt{Hz}}$
V ₀₁ /V ₀₂	Channel separation $^{(3)}$ 1kHz \leq f \leq 20kHz		120		dB

Table 3. $V_{CC}^+ = 5V, V_{CC}^- =$ Ground, $V_o = 1.4V, T_{amb} = 25^{\circ}C$ (unless otherwise specified)

1. $V_O = 1.4V, R_S = 0\Omega, 5V < V_{CC}^+ < 30V, 0V < V_{ic} < V_{CC}^+ - 1.5V.$

2. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output, so there is no change in the loading charge on the input lines.

3. Due to the proximity of external components ensure stray capacitance does not cause coupling between these external parts. This typically can be detected as this type of capacitance increases at higher frequencies.

6.2 SO-14 package information

Figure 29. SO-14 package mechanical drawing

Table 5.SO-14 package mechanical data

	Dimensions					
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
А			1.75			0.068
a1	0.1		0.2	0.003		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1			45°	(typ.)		
D	8.55		8.75	0.336		0.344
E	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		7.62			0.300	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.68			0.026
S	8° (max.)					

13/16

7 Ordering information

Order code	Temperature range	Package	Packing	Marking
LM2902N		DIP14	Tube	LM2902N
LM2902D LM2902DT		SO-14	Tube or tape & reel	2902
LM2902PT	-40°C, +125°C	TSSOP14 (Thin shrink outline package)	Tape & reel	2302
LM2902YD ⁽¹⁾ LM2902YDT ⁽¹⁾		SO-14 (Automotive grade level)	Tube or tape & reel	20027
LM2902YPT ⁽²⁾		TSSOP14 (Automotive grade level)	Tape & reel	20021

Table 7.Order codes

1. Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent.

2. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent are on-going.

