
AVR270: USB Mouse Demonstration

Features
• Runs with AT90USB Microcontrollers at 8MHz
• USB Low Power Bus Powered Device (less then 100mA)
• Supported by any PC running Windows® (98SE or later), Linux® or Mac OS®.
• Less than 3Kbytes of Code Required
• X, Y Movement, Left Button Supported

1. Introduction
The PS/2 interface has disappeared from the new generations of PCs to leave the
place to the USB interface. This change has to be followed by the designers of point-
ing devices, who should integrate the USB interface and allow an easy connection to
new PCs.

This document describes a simple mouse project. It allows to quickly test USB hard-
ware using AT90USB without any driver installation.

A familiarity with USB Software Library for AT90USBxxx Microcontrollers (doc 7675,
inc luded in the CD-ROM & Atmel webs i te) and the HID spec i f i ca t ion
(http://www.usb.org/developers/hidpage) is assumed.

7604C–AVR–07/08

8-bit
Microcontrollers

Application Note

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

2
7604C–AVR–07/08

AVR270

2. Hardware Requirements
The USB mouse application requires the following hardware:

• AVR USB evaluation board (STK525, AT90USBKey, STK526...or your own board)

• AVR USB microcontroller

• USB cable (Standard A to Mini B)

• PC running on Windows (98SE, ME, 2000, XP), Linux or MAC OS with USB 1.1 or 2.0 host

3. In-System programming and Device Firmware Upgrade
To program the device you can use the following methods:

• The JTAG interface using the JTAGICE MKII

• The SPI interface using the AVRISP MKII

• The USB interface thanks to the factory DFU bootloader and Flip software

• The parallel programming using the STK500 or STK600

Please refer to the hardware user guide of the board you are using (if you are using Atmel starter
kit) to see how to program the device using these different methods.

Please refer to Flip(1) help content to see how to install the USB driver and program the device
through the USB interface.

Note: 1. Flip is software provided by atmel to allow the user to program the AVR USB devices through
the USB interface (No external hardware required) thanks to the factory DFU bootloader.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

3
7604C–AVR–07/08

AVR270

4. Quick Start
Once your device is programmed with usb_mouse.a90 file, you can start the mouse demonstra-
tion. Check that your device is enumerated as a mouse (see figure 11), then you can use the kit
as a mouse.

Figure 4-1. Mouse Enumeration

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

4
7604C–AVR–07/08

AVR270

The figure below shows the STK525 used by the demo (you may use another kit: AT90USBKey,
STK526, depending on the AVR USB product you are working with):

Figure 4-2. Demonstration Board

To move the mouse pointer in several directions (up, down, left, right), you have to move the joy-
stick. The HWB button will be used as a left button.

Joystick

H W B
button

R eset
button

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

5
7604C–AVR–07/08

AVR270

5. Application Overview
The USB mouse application is a simple data exchange between the PC and the mouse.

The PC asks the mouse if there is new data available each P time (polling interval time), the
mouse will send the data if it is available, otherwise it will send a NAK (No Acknowledge) to tell
the PC that there is no data available.

Data sent to the PC are called ‘report’. This report has the structure below:

Figure 5-1. USB Report Structure

XYWheel

Button left

012

Byte 0Byte 1Byte 3 Byte 2

Button middle

Button right

Reserved :
default value 0

The mouse pointer position

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

6
7604C–AVR–07/08

AVR270

Figure 5-2. Application Overview

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

7
7604C–AVR–07/08

AVR270

6. Firmware
As explained in the USB Software Library for AT90USBxxx Microcontrollers document (doc
7675) all USB firmware packages are based on the same architecture.

Figure 6-1. USB Mouse Firmware Architecture

main.c

scheduler.c

usb_task.c

usb_standard_
request.c

usb_specific_
request.c

conf_scheduler.h

mouse_task.h

usb_descriptors.c

usb_drv.c

config.h

usb_standard_request.h usb_specific_request.h
usb_descriptors.h
conf_usb.h

Should not be modified by user Can be modified by user Added by user

M
o

u
se

 a
p

p
lic

at
io

n
A

P
I

D
ri

ve
rs

usb_drv.h

H
ar

d
w

ar
e

USB hardware interface

Enumeration
management

Mouse
application

management

usb_task.h

S
ta

rt
 u

p

stk_525.c

stk_525.h

mouse_task.c

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

8
7604C–AVR–07/08

AVR270

This section is dedicated to the mouse module only. The customization of the files described
hereafter allow the user to build his own mouse application.

6.1 mouse_task.c
This file contains the functions to initialize the mouse, collect the report data and put it in the
endpoint FIFO to be ready to be sent to the PC.

Figure 6-2. Mouse Application

6.1.1 mouse_task_init
This function performs the initialization of the mouse parameters and hardware resources (joy-
stick, button...).

6.1.2 Is_usb_mouse_event
If a mouse event occurs, this function updates the USB mouse report and returns true. Other-
wise it returns false.

6.1.3 mouse_task
This function checks if Is_usb_mouse_event is true and loads the report in the USB endpoint
FIFO to be transmited to the host.

6.2 stk_52x.c.
This file contains all the routines to manage the STK 52x board resources (Joystick, potentiome-
ter, Temperature sensor, LEDs...). The user should not modify this file when using the STK52x
board. Otherwise he has to build his own hadware management file.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

9
7604C–AVR–07/08

AVR270

6.3 How to manage the Remote Wake Up feature
The Remote Wake Up is an optional feature specified by the USB to allow the device to wake
the host up from a stand by mode (refer to the USB specification for further details). This request
is the only request which can be initiated by the device, but it has to be allowed by the host. The
host sends a Set Feature request to enable the Remote Wake Up feature just before sending
the suspend request. If the host did not send the Set Feature (RemoteWakeUpEnable), the
device is not allowed to perform this feature.

A USB device reports its ability to support remote wakeup in its configuration descriptor (refer
below to see how it is done with Atmel library). If a device supports remote wakeup, it must also
be allowed the capability to be enabled and disabled using the standard USB requests.

The configuration descriptor is defined in the usb_descriptors.h file as below:

// HID Mouse CONFIGURATION

#define NB_INTERFACE 1

#define CONF_NB 1

#define CONF_INDEX 0

#define CONF_ATTRIBUTES USB_CONFIG_BUSPOWERED

#define MAX_POWER 50 // 100 mA

To setup the Remote Wake Up feature, you have to modify the CONF_ATTRIBUTES as below:

#define CONF_ATTRIBUTES (USB_CONFIG_BUSPOWERED|USB_CONFIG_REMOTEWAKEUP)

If the device supports the Remote Wake Up feature, the user has to manage the
Set_Feature(DEVICE_REMOTE_WAKEUP) request using the void usb_set_feature(void).

Once the Set_Feature(DEVICE_REMOTE_WAKEUP) is well managed, you can use any button
(must be used in external interrupt/pin change mode) for example to wake up the host. To do
this, you have to take care of the following details:

• First, the USB controller must have detected the “suspend” state of the line: the remote

• wake-up can only be sent when a SUSPI flag is set.

• The firmware has then the ability to set RMWKUP to send the “upstream resume” stream.

• This will automatically be done by the controller after 5ms of inactivity on the USB line.

• When the controller starts to send the “upstream resume”, the UPRSMI interrupt is triggered

• (if enabled). SUSPI is cleared by hardware.

• RMWKUP is cleared by hardware at the end of the “upstream resume”.

• If the controller detects a good “End Of Resume” signal from the host, an EORSMI interrupt

is triggered (if enabled).

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

10
7604C–AVR–07/08

AVR270

6.4 How to modify my device from non-bootable to bootable device
Please note that HID device may be bootable or non-bootable. By default, the HID demo pro-
vided by Atmel are non-bootable devices. If your application needs to be bootable, you have to
modify the sub-class parameter (usb_descriptors.h):

// USB Interface descriptor Keyboard

#define INTERFACE_NB_MOUSE 0

#define ALTERNATE_MOUSE 0

#define NB_ENDPOINT_MOUSE 1

#define INTERFACE_CLASS_MOUSE 0x03 // HID Class

#define INTERFACE_SUB_CLASS_MOUSE 0x00 // Non-bootable

#define INTERFACE_PROTOCOL_MOUSE 0x01 //Keyboard

#define INTERFACE_INDEX_MOUSE 0

Set the INTERFACE_SUB_CLASS_MOUSE to 1 to convert the mouse to a bootable device.

7. PC Software
The USB mouse application does not require any PC software.

8. Limitations
The middle and the right buttons are not supported by this demonstration.

9. Related Documents
AVR USB Datasheet (doc 7593)

USB Software Library for AT90USBxxx Microcontrollers (doc 7675)

USB HID class specification (www.usb.org)

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

7604C–AVR–07/08

Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Product Contact

Web Site
www.atmel.com

Technical Support
avr@atmel.com

Sales Contact
www.atmel.com/contacts

Literature Requests
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, and others are registered trademarks or trademarks of
Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

