HLMP-132x Series, HLMP-142x Series, HLMP-152x Series

T-1 (3 mm) High Intensity LED Lamps

Data Sheet

Description

This family of T-1 lamps is specially designed for applications requiring higher on-axis intensity than is achievable with a standard lamp. The light generated is focused to a narrow beam to achieve this effect.

Package Dimensions

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES)
. AN EPOXY MENISCUS MAY EXTEND ABOUT 1 mm ($0.040^{\prime \prime}$) DOWN THE LEADS

Selection Guide

Features

- High intensity
- Choice of 3 bright colors

High Efficiency Red
Yellow
High Performance Green

- Popular T-1 diameter package
- Selected minimum intensities
- Narrow viewing angle
- General purpose leads
- Reliable and rugged
- Available on tape and reel
- For more information, please refer to Tape and Reel Option data sheet

Part Number	Package Description	Color	Luminous Intensity Iv (mcd) @ 10 mA	
			Min.	Max.
HLMP-1321	Tinted,	High Efficiency	8.6	-
HLMP-1321-G00xx	Non-diffused	Red	8.6	-
HLMP-1420	Microtinted, Non-diffused	Yellow	9.2	-
HLMP-1421	Tinted,		9.2	-
HLMP-1421-F00xx	Non-diffused		9.2	-
HLMP-1520	Microtinted, Non-diffused	Green	6.7	-
HLMP-1521	Tinted, Non-diffused		6.7	-
HLMP-1521-E00xx			6.7	-

Part Numbering System

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Red	Yellow	Green	Units
Peak Forward Current	90	60	90	mA
Average Forward Current ${ }^{[1]}$	25	20	25	mA
DC Current ${ }^{[2]}$	30	20	30	mA
Power Dissipation ${ }^{[3]}$	135	85	135	mW
Reverse Voltage $\left(l_{\mathrm{R}}=100 \mu \mathrm{~A}\right)$	5	5	5	V
Transient Forward Current ${ }^{[4]}(10 \mu$ sec Pulse $)$	500	500	500	mA
LED Junction Temperature	110	110	110	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	-40 to +100	-40 to +100	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-40 to +100	-40 to +100	-40 to +100	

Notes:

1. See Figure 5 (Red), 10 (Yellow), or 15 (Green) to establish pulsed operating conditions.
2. For Red and Green series derate linearly from $50^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$. For Yellow series derate linearly from $50^{\circ} \mathrm{C}$ at $0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. For Red and Green series derate power linearly from $25^{\circ} \mathrm{C}$ at $1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. For Yellow series derate power linearly from $50^{\circ} \mathrm{C}$ at $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.

Electrical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Description	Device	Min.	Typ.	Max.	Units	Test Conditions
		HLMP-					
Iv	Luminous Intensity	1320	8.6	30		mcd	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ (Figure 3)
		1321	8.6	30			
		1420	9.2	15		mcd	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ (Figure 8)
		1421	9.2	15			
		1520	6.7	22		mcd	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ (Figure 3)
		1521	6.7	22			
$2 \theta^{1 / 2}$	Including Angle Between	All		45		Deg.	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \\ & \text { See Note } 1 \\ & \text { (Figures } 6,11,16,21 \text {) } \end{aligned}$
	Half Luminous Intensity						
	Points						
$\lambda_{\text {PEAK }}$	Peak Wavelength	132x		635		nm	Measurement at Peak (Figure 1)
		142X		583			
		152X		565			
$\Delta \lambda_{1 / 2}$	Spectral Line Halfwidth	132x		40		nm	
		142X		36			
		152X		28			
λ_{d}	Dominant Wavelength	132x		626		nm	See Note 2 (Figure 1)
		142X		585			
		152X		569			
τ_{s}	Speed of Response	132x		90		ns	
		142X		90			
		152X		500			
C	Capacitance	132x		11		pF	$V_{F}=0 ; f=1 \mathrm{MHz}$
		142X		15			
		152X		18			
$R \theta_{\text {J-PIN }}$	Thermal Resistance	All		290		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead
V_{F}	Forward Voltage	132x		1.9	2.4	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
		142X		2.0	2.4		
		152X		2.1	2.7		
V_{R}	Reverse Breakdown Voltage	All	5.0			V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
η_{V}	Luminous Efficacy	132x		145		lumens	See Note 3
		142X		500			
		152X		595			

Notes:

1. $\theta^{1 / 2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
3. Radiant intensity, I_{e}, in watts/steradian, may be found from the equation $I_{e}=I_{v} / \eta_{v}$, where I_{v} is the luminous intensity in candelas and η_{v} is the luminous efficacy in lumens/watt.

Intensity Bin Limits

Color	Bin	Intensity Range (mcd)	
		Min.	Max.
Red	G	9.7	15.5
	H	15.5	24.8
	1	24.8	39.6
	J	39.6	63.4
	K	63.4	101.5
	L	101.5	162.4
	M	162.4	234.6
	N	234.6	340.0
	0	340.0	540.0
	P	540.0	850.0
	Q	850.0	1200.0
	R	1200.0	1700.0
	S	1700.0	2400.0
	T	2400.0	3400.0
	U	3400.0	4900.0
	V	4900.0	7100.0
	W	7100.0	10200.0
	X	10200.0	14800.0
	Y	14800.0	21400.0
	Z	21400.0	30900.0
Yellow	F	10.3	16.6
	G	16.6	26.5
	H	26.5	42.3
	1	42.3	67.7
	J	67.7	108.2
	K	108.2	173.2
	L	173.2	250.0
	M	250.0	360.0
	N	360.0	510.0
	0	510.0	800.0
	P	800.0	1250.0
	Q	1250.0	1800.0
	R	1800.0	2900.0
	S	2900.0	4700.0
	T	4700.0	7200.0
	U	7200.0	11700.0
	V	11700.0	18000.0
	W	18000.0	27000.0

Intensity Bin Limits

Color	Bin	Intensity Range (mcd)	
		Min.	Max.
Green	E	7.6	12.0
	F	12.0	19.1
	G	19.1	30.7
	H	30.7	49.1
	I	49.1	78.5
	J	78.5	125.7
	K	125.7	201.1
	L	201.1	289.0
	M	289.0	417.0
	N	417.0	680.0
	0	680.0	1100.0
	P	1100.0	1800.0
	Q	1800.0	2700.0
	R	2700.0	4300.0
	S	4300.0	6800.0
	T	6800.0	10800.0
	U	10800.0	16000.0
	V	16000.0	25000.0
	W	25000.0	40000.0

Maximum tolerance for each bin limit is $\pm 18 \%$.

Color Categories

Color	Category \#	Lambda (nm)	
		Min.	Max.
Green	6	561.5	564.5
	5	564.5	567.5
	4	567.5	570.5
	3	570.5	573.5
	2	573.5	576.5
Yellow	1	582.0	584.5
	3	584.5	587.0
	2	587.0	589.5
	4	589.5	592.0
	5	592.0	593.0

Maximum tolerance for each bin limit is $\pm 0.5 \mathrm{~nm}$.

Mechanical Option Matrix

Mechanical Option Code	Definition
00	Bulk Packaging, minimum increment $500 \mathrm{pcs} / \mathrm{bag}$
01	Tape \& Reel, crimped leads, minimum increment $1800 \mathrm{pcs} / \mathrm{bag}$
02	Tape \& Reel, straight leads, minimum increment $1800 \mathrm{pcs} / \mathrm{bag}$
A1	Right Angle Housing, uneven leads, minimum increment $500 \mathrm{pcs} / \mathrm{bag}$
A2	Right Angle Housing, even leads, minimum increment $500 \mathrm{pcs} / \mathrm{bag}$

Note:
All categories are established for classification of products. Products may not be available in all categories. Please contact your local Avago representative for further clarification/information.

