

LM2931

Series Low Dropout Regulators

General Description

The LM2931 positive voltage regulator features a very low quiescent current of 1mA or less when supplying 10mA loads. This unique characteristic and the extremely low input-output differential required for proper regulation (0.2V for output currents of 10mA) make the LM2931 the ideal regulator for standby power systems. Applications include memory standby circuits, CMOS and other low power processor power supplies as well as systems demanding as much as 100mA of output current.

Designed originally for automotive applications, the LM2931 and all regulated circuitry are protected from reverse battery installations or 2 battery jumps. During line transients, such as a load dump (60V) when the input voltage to the regulator can momentarily exceed the specified maximum operating voltage, the regulator will automatically shut down to protect both internal circuits and the load. The LM2931 cannot be harmed by temporary mirror-image insertion. Familiar regulator features such as short circuit and thermal overload protection are also provided.

The LM2931 family includes a fixed 5V output (±3.8% tolerance for A grade) or an adjustable output with ON/OFF pin.

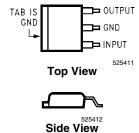
Both versions are available in a TO-220 power package, TO-263 surface mount package, and an 8-lead surface mount package. The fixed output version is also available in the TO-92 plastic and 6-Bump micro SMD packages.

Features

- Very low guiescent current
- Output current in excess of 100 mA
- Input-output differential less than 0.6V
- Reverse battery protection
- 60V load dump protection
- -50V reverse transient protection
- Short circuit protection
- Internal thermal overload protection
- Mirror-image insertion protection
- Available in TO-220, TO-92, TO-263, SO-8 or 6-Bump micro SMD packages
- Available as adjustable with TTL compatible switch
- See AN-1112 for micro SMD considerations

Connection Diagrams

FIXED VOLTAGE OUTPUT


TO-220 3-Lead Power Package
OUT
GND
IN
525406

8-Pin Surface Mount OUT — 1 ● 8 — IN GND — 2 7 — GND GND — 3 6 — GND NC* — 4 5 — NC*

*NC = Not internally connected. Must be electrically isolated from the rest of the circuit for the micro SMD package.

Top View

TO-263 Surface-Mount Package

Bottom View 525408

6-Bump micro SMD micro SMD Laser Mark X = Date Code NC* GND NC* Α2 В2 C2 Pin A1 Identifier C1 A 1 В1 525439 OUT NC* IN 525438 **Top View** (Bump Side Down) ADJUSTABLE OUTPUT VOLTAGE TO-220 5-Lead Power Package TO-263 5-Lead Surface-Mount Package = 5 OUT = 4 IN = 3 GND = 2 ON/OFF = 1 ADJUST ${\sf GND}$ 525409 525413 **Front View Top View** Side View 8-Pin Surface Mount 0UT **—** 1 ● 8 — IN GND -- GND GND - GND ADJ · ON/OFF

525410

Top View

Ordering Information

Output Number	Package	Part Number	Package Marking	Transport Media	NSC Drawing	
5V	3-Pin TO-220	LM2931T-5.0	LM2931T-5.0	Rails	T03B	
		LM2931AT-5.0	LM2931AT-5.0	Rails		
	3-Pin TO-263	LM2931S-5.0	LM2931S-5.0	Rails	TS3B	
		LM2931AS-5.0	LM2931AS-5.0	Rails		
	TO-92	LM2931Z-5.0	LM2931Z-5	1.8k Units per Box	Z03A	
		LM2931AZ-5.0	LM2931AZ	1.8k Units per Box		
	8-Pin	LM2931M-5.0	2931M-5.0	Rails	A80M	
	SOIC	LM2931AM-5.0	2931AM-5.0	Rails]	
	* 6-Bump micro SMD	LM2931IBPX-5.0	-	Tape and Reel	BPA06HTA	
Adjustable, 3V to 24V	5-Pin TO-220	LM2931CT	LM2931CT	Rails	T05A	
	5-Pin TO-263	LM2931CS	LM2931CS	Rails	TS5B	
	8-Pin SOIC	LM2931CM	LM2931CM	Rails	M08A	
3.3V	* 6-Bump micro SMD	LM2931IBPX-3.3	-	Tape and Reel	BPA06HTB	

Note: The micro SMD package marking is a single digit manufacturing Date Code Only.

50V

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Input Voltage

Operating Range

Overvoltage Protection

LM2931A, LM2931C (Adjustable)

LM2931

Internal Power Dissipation

(Notes 2, 4)

Operating Ambient Temperature Range

Maximum Junction Temperature

iture

125°C -65°C to +150°C

-40°C to +85°C

Internally Limited

Storage Temperature Range Lead Temp. (Soldering, 10 seconds) ESD Tolerance (Note 5)

230°C 2000V

Electrical Characteristics for Fixed 3.3V Version

26V

60V

 V_{IN} = 14V, I_{O} = 10mA, T_{J} = 25°C, C_{2} = 100 μ F (unless otherwise specified) (Note 2)

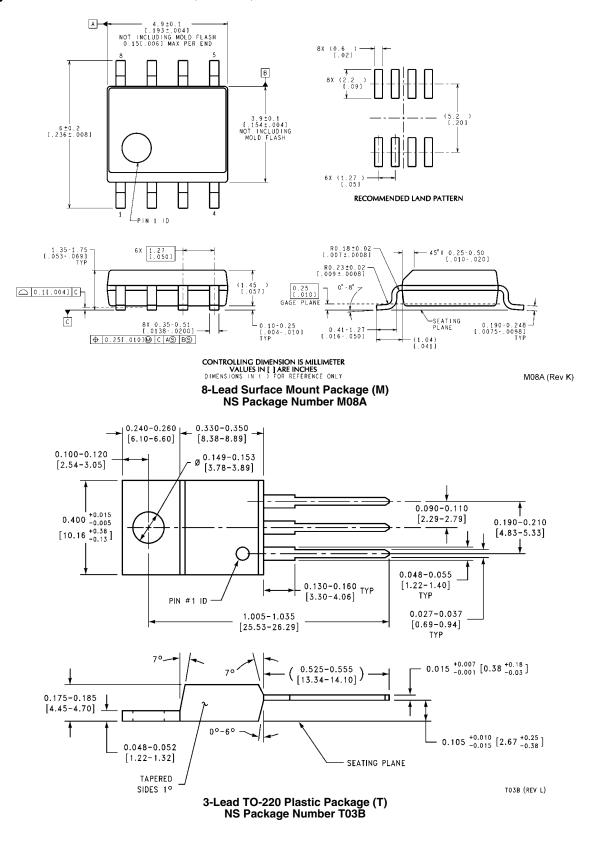
Parameter	Conditions	LM	LM2931-3.3		
		Тур	Limit (Note 3)		
Output Voltage		3.3	3.465	V _{MAX}	
			3.135	V_{MIN}	
	4V ≤ V _{IN} ≤ 26V, I _O = 100 mA		3.630	V_{MAX}	
	-40°C ≤ T _J ≤ 125°C		2.970	V_{MIN}	
ine Regulation	4V ≤ V _{IN} ≤ 26V	4	33	mV_MAX	
oad Regulation	5mA ≤ I _O ≤ 100mA	10	50	mV_MAX	
Output Impedance	100mA _{DC} and 10mA _{rms} ,	200		mΩ	
	100Hz - 10kHz				
Quiescent Current	$I_O \le 10$ mA, 4 V $\le V_{IN} \le 26$ V	0.4	1.0	mA _{MAX}	
	–40°C ≤ T _J ≤ 125°C				
	$I_{O} = 100 \text{mA}, V_{IN} = 14 \text{V}, T_{J} = 25 ^{\circ}\text{C}$	15		mA	
Output Noise Voltage	10Hz -100kHz, C _{OUT} = 100μF	330		μV_{rms}	
ong Term Stability		13		mV/1000 hr	
Ripple Rejection	f _O = 120Hz	80		dB	
Dropout Voltage	I _O = 10mA	0.05	0.2	.,	
	I _O = 100mA	0.30	0.6	V_{MAX}	
Maximum Operational Input Voltage		33	26	V_{MIN}	
Maximum Line Transient	$R_L = 500\Omega, V_O \le 5.5V,$	70	50	V _{MIN}	
	T = 1ms, τ ≤ 100ms				
Reverse Polarity Input Voltage, DC	$V_{O} \ge -0.3V, R_{L} = 500\Omega$	-30	-15	V _{MIN}	
Reverse Polarity Input Voltage, Fransient	T = 1ms, τ ≤ 100ms, R_L = 500Ω	-80	-50	V_{MIN}	

Electrical Characteristics for Fixed 5V Version

 V_{IN} = 14V, I_{O} = 10mA, T_{J} = 25°C, C2 = 100 μF (unless otherwise specified) (Note 2)

Parameter	Conditions	LM29	LM2931A-5.0		LM2931-5.0	
		Тур	Limit (Note 3)	Тур	Limit (Note 3)	
Output Voltage		5	5.19 4.81	5	5.25 4.75	V _{MAX} V _{MIN}
	$6.0V \le V_{IN} \le 26V, I_{O} = 100 \text{mA}$ $-40^{\circ}\text{C} \le T_{J} \le 125^{\circ}\text{C}$		5.25 4.75		5.5 4.5	V _{MAX} V _{MIN}
Line Regulation	$9V \le V_{ N} \le 16V$ $6V \le V_{ N} \le 26V$	2 4	10 30	2 4	10 30	mV _{MAX}
Load Regulation	5 mA ≤ I _O ≤ 100mA	14	50	14	50	mV _{MAX}
Output Impedance	100mA _{DC} and 10mA _{rms} , 100Hz -10kHz	200		200		mΩ
Quiescent Current	$I_O \le 10 \text{mA}, 6V \le V_{IN} \le 26V$ -40°C \le T_J \le 125°C	0.4	1.0	0.4	1.0	mA _{MAX}
	$I_{O} = 100 \text{mA}, V_{IN} = 14 \text{V}, T_{J} = 25 ^{\circ}\text{C}$	15	30 5	15		mA _{MAX} mA _{MIN}
Output Noise Voltage	10Hz -100kHz, C _{OUT} = 100μF	500		500		μV_{rms}
Long Term Stability		20		20		mV/1000 hr
Ripple Rejection	f _O = 120 Hz	80	55	80		dB _{MIN}
Dropout Voltage	I _O = 10mA I _O = 100mA	0.05 0.3	0.2 0.6	0.05 0.3	0.2 0.6	V _{MAX}
Maximum Operational Input Voltage		33	26	33	26	V _{MIN}
Maximum Line Transient	$R_L = 500\Omega$, $V_O \le 5.5V$, $T = 1$ ms, $\tau \le 100$ ms	70	60	70	50	V _{MIN}
Reverse Polarity Input Voltage, DC	$V_{O} \ge -0.3V$, $R_{L} = 500\Omega$	-30	-15	-30	-15	V _{MIN}
Reverse Polarity Input Voltage, Transient	T = 1ms, τ ≤ 100ms, R_L = 500Ω	-80	-50	-80	-50	V _{MIN}

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Electrical specifications do not apply when operating the device beyond its rated operating conditions.


If the TO-263 package is used, the thermal resistance can be reduced by increasing the P.C. board copper area thermally connected to the package: Using 0.5 square inches of copper area, θ_{JA} is 50°C/W; with 1 square inch of copper area, θ_{JA} is 37°C/W; and with 1.6 or more square inches of copper area, θ_{JA} is 32°C/W

Note 2: See circuit in Typical Applications. To ensure constant junction temperature, low duty cycle pulse testing is used.

Note 3: All limits are guaranteed for $T_J = 25^{\circ}$ C (standard type face) or over the full operating junction temperature range of -40° C to $+125^{\circ}$ C (bold type face).

Note 4: The maximum power dissipation is a function of maximum junction temperature T_{Jmax} , total thermal resistance θ_{JA} , and ambient temperature T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{Jmax} - T_A)/\theta_{JA}$. If this dissipation is exceeded, the die temperature will rise above 150°C and the LM2931 will go into thermal shutdown. For the LM2931 in the TO-92 package, θ_{JA} is 195°C/W; in the SO-8 package, θ_{JA} is 160°C/W, and in the TO-220 package, θ_{JA} is 50°C/W; in the TO-263 package, θ_{JA} is 73°C/W; and in the 6-Bump micro SMD package θ_{JA} is 290°C/W. If the TO-220 package is used with a heat sink, θ_{JA} is the sum of the package thermal resistance junction-to-case of 3°C/W and the thermal resistance added by the heat sink and thermal interface

Physical Dimensions inches (millimeters) unless otherwise noted

