LM1575/LM2575/LM2575HV SIMPLE SWITCHER ${ }^{\circledR}$ 1A Step-Down Voltage Regulator

General Description

The LM2575 series of regulators are monolithic integrated circuits that provide all the active functions for a step-down (buck) switching regulator, capable of driving a 1A load with excellent line and load regulation. These devices are available in fixed output voltages of $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}$, and an adjustable output version.
Requiring a minimum number of external components, these regulators are simple to use and include internal frequency compensation and a fixed-frequency oscillator.
The LM2575 series offers a high-efficiency replacement for popular three-terminal linear regulators. It substantially reduces the size of the heat sink, and in many cases no heat sink is required.
A standard series of inductors optimized for use with the LM2575 are available from several different manufacturers. This feature greatly simplifies the design of switch-mode power supplies.
Other features include a guaranteed $\pm 4 \%$ tolerance on output voltage within specified input voltages and output load conditions, and $\pm 10 \%$ on the oscillator frequency. External shutdown is included, featuring $50 \mu \mathrm{~A}$ (typical) standby current. The output switch includes cycle-by-cycle current limiting, as well as thermal shutdown for full protection under fault conditions.

Typical Application

(Fixed Output Voltage Versions)

Note: Pin numbers are for the TO-220 package.

Applications

- Simple high-efficiency step-down (buck) regulator
- Efficient pre-regulator for linear regulators
- On-card switching regulators
- Positive to negative converter (Buck-Boost)

Ordering Information

Package Type	NSC Package Number	Standard Voltage Rating (40V)	High Voltage Rating (60V)	Temperature Range
5-Lead TO-220 Straight Leads	T05A	LM2575T-3.3 LM2575T-5.0 LM2575T-12 LM2575T-15 LM2575T-ADJ	LM2575HVT-3.3 LM2575HVT-5.0 LM2575HVT-12 LM2575HVT-15 LM2575HVT-ADJ	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$
5-Lead TO-220 Bent and Staggered Leads	T05D	LM2575T-3.3 Flow LB03 LM2575T-5.0 Flow LB03 LM2575T-12 Flow LB03 LM2575T-15 Flow LB03 LM2575T-ADJ Flow LB03	LM2575HVT-3.3 Flow LB03 LM2575HVT-5.0 Flow LB03 LM2575HVT-12 Flow LB03 LM2575HVT-15 Flow LB03 LM2575HVT-ADJ Flow LB03	
16-Pin Molded DIP	N16A	LM2575N-5.0 LM2575N-12 LM2575N-15 LM2575N-ADJ	LM2575HVN-5.0 LM2575HVN-12 LM2575HVN-15 LM2575HVN-ADJ	
24-Pin Surface Mount	M24B	LM2575M-5.0 LM2575M-12 LM2575M-15 LM2575M-ADJ	LM2575HVM-5.0 LM2575HVM-12 LM2575HVM-15 LM2575HVM-ADJ	
5-Lead TO-263 Surface Mount	TS5B	LM2575S-3.3 LM2575S-5.0 LM2575S-12 LM2575S-15 LM2575S-ADJ	LM2575HVS-3.3 LM2575HVS-5.0 LM2575HVS-12 LM2575HVS-15 LM2575HVS-ADJ	
16-Pin Ceramic DIP	J16A	LM1575J-3.3-QML LM1575J-5.0-QML LM1575J-12-QML LM1575J-15-QML LM1575J-ADJ-QML		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+150^{\circ} \mathrm{C}$

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Maximum Supply Voltage

LM1575/LM2575
LM2575HV
$\overline{\mathrm{ON}}$ /OFF Pin Input Voltage
Output Voltage to Ground
(Steady State)
Power Dissipation
Storage Temperature Range
Maximum Junction Temperature

63 V
$-0.3 \mathrm{~V} \leq \mathrm{V} \leq+\mathrm{V}_{\text {IN }}$
-1V
Internally Limited
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$150^{\circ} \mathrm{C}$

Minimum ESD Rating

$$
(\mathrm{C}=100 \mathrm{pF}, \mathrm{R}=1.5 \mathrm{k} \Omega) \quad 2 \mathrm{kV}
$$

Lead Temperature (Soldering, 10 sec .)
$260^{\circ} \mathrm{C}$

Operating Ratings

Temperature Range
$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+150^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$

Supply Voltage

 LM1575/LM2575 40V LM2575HV 60V
LM1575-3.3, LM2575-3.3, LM2575HV-3.3

Electrical Characteristics

Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range

Symbol	Parameter	Conditions	Typ	LM1575-3.3	LM2575-3.3 LM2575HV-3.3	Units (Limits)
				Limit	Limit	
				(Note 2)	(Note 3)	

SYSTEM PARAMETERS (Note 4) Test Circuit Figure 2

$\mathrm{V}_{\text {OUT }}$	Output Voltage	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{LOAD}}=0.2 \mathrm{~A}$ Circuit of Figure 2	3.3	$\begin{aligned} & 3.267 \\ & 3.333 \end{aligned}$	$\begin{aligned} & 3.234 \\ & 3.366 \end{aligned}$	$\begin{gathered} \text { V } \\ \text { V(Min) } \\ \text { V(Max) } \end{gathered}$
$\mathrm{V}_{\text {OUT }}$	Output Voltage LM1575/LM2575	$4.75 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 1 \mathrm{~A}$ Circuit of Figure 2	3.3	$\begin{aligned} & 3.200 / 3.168 \\ & 3.400 / 3.432 \end{aligned}$	$\begin{aligned} & 3.168 / 3.135 \\ & 3.432 / 3.465 \end{aligned}$	V V (Min) V(Max)
$\mathrm{V}_{\text {OUT }}$	Output Voltage LM2575HV	$\begin{aligned} & 4.75 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 60 \mathrm{~V}, 0.2 \mathrm{~A} \leq \mathrm{I}_{\mathrm{LOAD}} \leq 1 \mathrm{~A} \\ & \text { Circuit of Figure } 2 \end{aligned}$	3.3	$\begin{aligned} & 3.200 / 3.168 \\ & 3.416 / 3.450 \end{aligned}$	$\begin{aligned} & 3.168 / 3.135 \\ & 3.450 / 3.482 \end{aligned}$	V $V(\operatorname{Min})$ $V(\operatorname{Max})$
η	Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=1 \mathrm{~A}$	75			\%

LM1575-5.0, LM2575-5.0, LM2575HV-5.0
 Electrical Characteristics

Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range.

Symbol	Parameter	Conditions	Typ	LM1575-5.0	$\begin{gathered} \text { LM2575-5.0 } \\ \text { LM2575HV-5.0 } \end{gathered}$	Units(Limits)
				Limit (Note 2)	Limit (Note 3)	
SYSTEM PARAMETERS (Note 4) Test Circuit Figure 2						
$\mathrm{V}_{\text {OUT }}$	Output Voltage	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.2 \mathrm{~A}$ Circuit of Figure 2	5.0	$\begin{aligned} & 4.950 \\ & 5.050 \end{aligned}$	$\begin{aligned} & 4.900 \\ & 5.100 \end{aligned}$	V $V(\operatorname{Min})$ $V(\operatorname{Max})$
$\mathrm{V}_{\text {OUT }}$	Output Voltage LM1575/LM2575	$\begin{aligned} & 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 1 \mathrm{~A}, \\ & 8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 40 \mathrm{~V} \\ & \text { Circuit of Figure } 2 \end{aligned}$	5.0	$\begin{aligned} & 4.850 / 4.800 \\ & 5.150 / 5.200 \end{aligned}$	$\begin{aligned} & 4.800 / 4.750 \\ & 5.200 / 5.250 \end{aligned}$	$\begin{gathered} \hline \mathrm{V} \\ \mathrm{~V}(\mathrm{Min}) \\ \mathrm{V}(\mathrm{Max}) \\ \hline \end{gathered}$

LM1575/LM2575/LM2575HV

Symbol	Parameter	Conditions	Typ	LM1575-5.0	$\begin{gathered} \text { LM2575-5.0 } \\ \text { LM2575HV-5.0 } \end{gathered}$	Units (Limits)
				Limit (Note 2)	Limit (Note 3)	
$\mathrm{V}_{\text {OUT }}$	Output Voltage LM2575HV	$\begin{aligned} & 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 1 \mathrm{~A}, \\ & 8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 60 \mathrm{~V} \\ & \text { Circuit of Figure } 2 \\ & \hline \end{aligned}$	5.0	$\begin{aligned} & 4.850 / 4.800 \\ & 5.175 / 5.225 \end{aligned}$	$\begin{aligned} & 4.800 / 4.750 \\ & 5.225 / 5.275 \end{aligned}$	V V (Min) V(Max)
η	Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=1 \mathrm{~A}$	77			\%

LM1575-12, LM2575-12, LM2575HV-12
 Electrical Characteristics

Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range .

Symbol	Parameter	Conditions	Typ	LM1575-12	$\begin{gathered} \text { LM2575-12 } \\ \text { LM2575HV-12 } \end{gathered}$	Units(Limits)
				Limit (Note 2)	Limit (Note 3)	
SYSTEM PARAMETERS (Note 4) Test Circuit Figure 2						
$\mathrm{V}_{\text {OUT }}$	Output Voltage	$\mathrm{V}_{\mathrm{IN}}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{LOAD}}=0.2 \mathrm{~A}$ Circuit of Figure 2	12	$\begin{aligned} & 11.88 \\ & 12.12 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.76 \\ & 12.24 \\ & \hline \end{aligned}$	V $V(\operatorname{Min})$ $V(\operatorname{Max})$
$\mathrm{V}_{\text {OUT }}$	Output Voltage LM1575/LM2575	$\begin{aligned} & 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 1 \mathrm{~A}, \\ & 15 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V} \\ & \text { Circuit of Figure } 2 \\ & \hline \end{aligned}$	12	$\begin{aligned} & 11.64 / 11.52 \\ & 12.36 / 12.48 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.52 / 11.40 \\ & 12.48 / 12.60 \\ & \hline \end{aligned}$	V V(Min) V(Max)
$\mathrm{V}_{\text {OUT }}$	Output Voltage LM2575HV	$\begin{aligned} & 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 1 \mathrm{~A}, \\ & 15 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 60 \mathrm{~V} \\ & \text { Circuit of Figure } 2 \end{aligned}$	12	$\begin{aligned} & 11.64 / 11.52 \\ & 12.42 / 12.54 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.52 / 11.40 \\ & 12.54 / 12.66 \\ & \hline \end{aligned}$	V V (Min) V(Max)
η	Efficiency	$\mathrm{V}_{\text {IN }}=15 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=1 \mathrm{~A}$	88			\%

LM1575-15, LM2575-15, LM2575HV-15 Electrical Characteristics

Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range .

Symbol	Parameter	Conditions	Typ	LM1575-15	LM2575-15 LM2575HV-15	Units (Limits)
					Limit	Limit
			(Note 2)	(Note 3)		

SYSTEM PARAMETERS (Note 4) Test Circuit Figure 2

$\mathrm{V}_{\text {OUT }}$	Output Voltage	$\mathrm{V}_{\mathrm{IN}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{LOAD}}=0.2 \mathrm{~A}$ Circuit of Figure 2	15	$\begin{aligned} & 14.85 \\ & 15.15 \end{aligned}$	$\begin{aligned} & 14.70 \\ & 15.30 \end{aligned}$	V V(Min) V(Max)
$\mathrm{V}_{\text {OUT }}$	Output Voltage LM1575/LM2575	$\begin{aligned} & 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 1 \mathrm{~A}, \\ & 18 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V} \\ & \text { Circuit of Figure } 2 \end{aligned}$	15	$\begin{aligned} & 14.55 / 14.40 \\ & 15.45 / 15.60 \end{aligned}$	$\begin{aligned} & 14.40 / 14.25 \\ & 15.60 / 15.75 \end{aligned}$	V V(Min) V(Max)
$\mathrm{V}_{\text {OUT }}$	Output Voltage LM2575HV	$\begin{aligned} & 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 1 \mathrm{~A}, \\ & 18 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 60 \mathrm{~V} \\ & \text { Circuit of Figure } 2 \end{aligned}$	15	$\begin{gathered} 14.55 / 14.40 \\ 15.525 / 15.675 \end{gathered}$	$\begin{aligned} & 14.40 / 14.25 \\ & 15.68 / 15.83 \\ & \hline \end{aligned}$	V V(Min) V(Max)
η	Efficiency	$\mathrm{V}_{\text {IN }}=18 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=1 \mathrm{~A}$	88			\%

LM1575-ADJ, LM2575-ADJ, LM2575HV-ADJ
 Electrical Characteristics

Specifications with standard type face are for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range.

Symbol	Parameter	Conditions	Typ	LM1575-ADJ	LM2575-ADJ LM2575HV-ADJ	$\begin{gathered} \text { Units } \\ \text { (Limits) } \end{gathered}$
				Limit (Note 2)	Limit (Note 3)	
SYSTEM PARAMETERS (Note 4) Test Circuit Figure 2						
$\mathrm{V}_{\text {OUT }}$	Feedback Voltage	$\begin{aligned} & \mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.2 \mathrm{~A} \\ & \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V} \end{aligned}$ Circuit of Figure 2	1.230	$\begin{aligned} & 1.217 \\ & 1.243 \end{aligned}$	$\begin{aligned} & 1.217 \\ & 1.243 \end{aligned}$	V V (Min) V (Max)
$\mathrm{V}_{\text {OUT }}$	Feedback Voltage LM1575/LM2575	$\begin{aligned} & 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 1 \mathrm{~A}, \\ & 8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, \text { Circuit of Figure } 2 \end{aligned}$	1.230	$\begin{aligned} & 1.205 / 1.193 \\ & 1.255 / 1.267 \end{aligned}$	$\begin{aligned} & 1.193 / 1.180 \\ & 1.267 / 1.280 \end{aligned}$	V V(Min) V(Max)
$\mathrm{V}_{\text {OUT }}$	Feedback Voltage LM2575HV	$\begin{aligned} & 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 1 \mathrm{~A}, \\ & 8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 60 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, \text { Circuit of Figure } 2 \\ & \hline \end{aligned}$	1.230	$\begin{aligned} & 1.205 / 1.193 \\ & 1.261 / 1.273 \end{aligned}$	$\begin{aligned} & 1.193 / 1.180 \\ & 1.273 / 1.286 \end{aligned}$	V V (Min) V(Max)
η	Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=1 \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$	77			\%

All Output Voltage Versions Electrical Characteristics

Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range. Unless otherwise specified, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$ for the $3.3 \mathrm{~V}, 5 \mathrm{~V}$, and Adjustable version, $\mathrm{V}_{\mathrm{IN}}=25 \mathrm{~V}$ for the 12 V version, and $\mathrm{V}_{\text {IN }}=$ 30 V for the 15 V version. $\mathrm{I}_{\text {LOAD }}=200 \mathrm{~mA}$.

Symbol	Parameter	Conditions	Typ	LM1575-XX	LM2575-XX LM2575HV-XX	Units (Limits)
				Limit (Note 2)	Limit (Note 3)	
DEVICE PARAMETERS						
I_{b}	Feedback Bias Current	$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$ (Adjustable Version Only)	50	100/500	100/500	nA
f_{O}	Oscillator Frequency	(Note 13)	52	$\begin{aligned} & 47 / 43 \\ & 58 / 62 \end{aligned}$	$\begin{aligned} & 47 / 42 \\ & 58 / 63 \end{aligned}$	$\begin{gathered} \hline \mathrm{kHz} \\ \mathrm{kHz}(\mathrm{Min}) \\ \mathrm{kHz}(\mathrm{Max}) \\ \hline \end{gathered}$
$\mathrm{V}_{\text {SAT }}$	Saturation Voltage	$\mathrm{I}_{\text {Out }}=1 \mathrm{~A}($ Note 5)	0.9	1.2/1.4	1.2/1.4	$\begin{gathered} \hline \mathrm{V} \\ \mathrm{~V}(\operatorname{Max}) \end{gathered}$
DC	Max Duty Cycle (ON)	(Note 6)	98	93	93	$\begin{gathered} \% \\ \%(\mathrm{Min}) \end{gathered}$
I_{CL}	Current Limit	Peak Current (Notes 5, 13)	2.2	$\begin{aligned} & 1.7 / 1.3 \\ & 3.0 / 3.2 \end{aligned}$	$\begin{aligned} & 1.7 / 1.3 \\ & 3.0 / 3.2 \end{aligned}$	A A(Min) A(Max)
$\overline{\mathrm{I}}$	Output Leakage Current	(Notes 7, 8) Output $=0 \mathrm{~V}$ Output $=-1 \mathrm{~V}$ Output $=-1 \mathrm{~V}$	7.5	2 30	2 30	$\begin{gathered} \hline \mathrm{mA}(\mathrm{Max}) \\ \mathrm{mA} \\ \mathrm{~mA}(\text { Max }) \end{gathered}$
I_{Q}	Quiescent Current	(Note 7)	5	10/12	10	$\begin{gathered} \mathrm{mA} \\ \mathrm{~mA}(\mathrm{Max}) \end{gathered}$
$\mathrm{I}_{\text {STBY }}$	Standby Quiescent Current	$\overline{\text { ON }} /$ OFF Pin $=5 \mathrm{~V}$ (OFF)	50	200/500	200	$\begin{gathered} \mu \mathrm{A} \\ \mu \mathrm{~A}(\mathrm{Max}) \end{gathered}$

Symbol	Parameter	Conditions	Typ	LM1575-XX	LM2575-XX LM2575HV-XX	$\begin{aligned} & \text { Units } \\ & \text { (Limits) } \end{aligned}$
				Limit (Note 2)	Limit (Note 3)	
$\begin{aligned} & \theta_{\mathrm{JA}} \\ & \theta_{\mathrm{JA}} \\ & \theta_{\mathrm{JC}} \\ & \theta_{\mathrm{JA}} \\ & \theta_{\mathrm{JA}} \\ & \theta_{\mathrm{JA}} \end{aligned}$	Thermal Resistance	T Package, Junction to Ambient (Note 9) T Package, Junction to Ambient (Note 10) T Package, Junction to Case N Package, Junction to Ambient (Note 11) M Package, Junction to Ambient (Note 11) S Package, Junction to Ambient (Note 12)	$\begin{array}{\|c\|} \hline 65 \\ 45 \\ 2 \\ 85 \\ 100 \\ 37 \end{array}$			${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\overline{\overline{O N}} / O F F$ CONTROL Test Circuit Figure 2						
V_{IH}	$\overline{\mathrm{ON}}$ /OFF Pin Logic Input Level	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	1.4	2.2/2.4	2.2/2.4	V (Min)
$\mathrm{V}_{\text {IL }}$		$\mathrm{V}_{\text {OUT }}=$ Nominal Output Voltage	1.2	1.0/0.8	1.0/0.8	V(Max)
I_{IH}	$\overline{\mathrm{ON}}$ /OFF Pin Input Current	$\overline{\text { ON }} /$ OFF Pin $=5 \mathrm{~V}$ (OFF)	12	30	30	$\begin{gathered} \mu \mathrm{A} \\ \mu \mathrm{~A}(\mathrm{Max}) \end{gathered}$
IIL		$\overline{\mathrm{ON}} / \mathrm{OFF}$ Pin $=0 \mathrm{~V}(\mathrm{ON})$	0	10	10	$\begin{gathered} \mu \mathrm{A} \\ \mu \mathrm{~A}(\mathrm{Max}) \end{gathered}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.
Note 2: All limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face). All limits are used to calculate Average Outgoing Quality Level, and all are 100\% production tested.

Note 3: All limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limits are 100\% production tested. All limits at temperature extremes are guaranteed via correlation using standard Statistical Quality Control (SQC) methods.
Note 4: External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance. When the LM1575/ LM2575 is used as shown in the Figure 2 test circuit, system performance will be as shown in system parameters section of Electrical Characteristics.
Note 5: Output (pin 2) sourcing current. No diode, inductor or capacitor connected to output pin.
Note 6: Feedback (pin 4) removed from output and connected to OV.
Note 7: Feedback (pin 4) removed from output and connected to +12 V for the Adjustable, 3.3 V , and 5 V versions, and +25 V for the 12 V and 15 V versions, to force the output transistor OFF.
Note 8: $\mathrm{V}_{\mathrm{IN}}=40 \mathrm{~V}$ (60 V for the high voltage version).
Note 9: Junction to ambient thermal resistance (no external heat sink) for the 5 lead TO-220 package mounted vertically, with $1 / 2$ inch leads in a socket, or on a PC board with minimum copper area.
Note 10: Junction to ambient thermal resistance (no external heat sink) for the 5 lead TO-220 package mounted vertically, with $1 / 2$ inch leads soldered to a PC board containing approximately 4 square inches of copper area surrounding the leads.
Note 11: Junction to ambient thermal resistance with approximately 1 square inch of pc board copper surrounding the leads. Additional copper area will lower thermal resistance further. See thermal model in Switchers made Simple software.
Note 12: If the TO-263 package is used, the thermal resistance can be reduced by increasing the PC board copper area thermally connected to the package: Using 0.5 square inches of copper area, θ_{JA} is $50^{\circ} \mathrm{C} / \mathrm{W}$; with 1 square inch of copper area, θ_{JA} is $37^{\circ} \mathrm{C} / \mathrm{W}$; and with 1.6 or more square inches of copper area, θ_{JA} is $32^{\circ} \mathrm{C} / \mathrm{W}$.
Note 13: The oscillator frequency reduces to approximately 18 kHz in the event of an output short or an overload which causes the regulated output voltage to drop approximately 40% from the nominal output voltage. This self protection feature lowers the average power dissipation of the IC by lowering the minimum duty cycle from 5% down to approximately 2%.
Note 14: Refer to RETS LM1575J for current revision of military RETS/SMD.

LAND PATTERN RECOMMENDATION
 LM2575HVS-12, LM2575S-15, LM2575HVS-15, LM2575S-ADJ or LM2575HVS-ADJ

NS Package Number TS5B

