TOSHIBA Photocoupler Photo Relay

TLP598G

Telecommunication
Data Acquisition
Measurement Instrumentation

The TOSHIBA TLP598G consists of an aluminum gallium arsenide infrared emitting diode optically coupled to a photo-MOS FET in a six lead plastic DIP package (DIP6).
The TLP598G is a bi-directional switch which can replace mechanical relays in many applications.

- Peak off-state voltage: 400 V (min.)
- On-state current: 150 mA (max.) (A connection)
- On-state resistance: 12Ω (max.) (A connection)
- Isolation voltage: 2500 Vrms (min.) (A connection)
- UL recognized: UL1577, file no. E67349
- Trigger LED current $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Classification (Note 1)	Trigger LED Current (mA)		Marking Of Classification
	@10N = 150 mA		
	Min.	Max.	
(IFT2)	-	2	T2
Standard	-	5	T2, blank

(Note 1): Application type name for certification test, please use standard product type name, i.e.

TLP598G (IFT2): TLP598G

Pin Configuration (top view)

1. : ANODE
2. : CATHODE
3. : NC
4. : DRAIN D1
5. : SOURCE
6. : DRAIN D2

Schematic

Maximum Ratings ($\mathbf{T a}=25^{\circ} \mathrm{C}$)

Characteristic			Symbol	Rating	Unit
	Forward current		I_{F}	30	mA
	Forward current derating ($\mathrm{Ta} \geq 25^{\circ} \mathrm{C}$)		$\Delta \mathrm{I}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$	-0.3	$\mathrm{mA} /{ }^{\circ} \mathrm{C}$
	Peak forward current (100 μ s pulse, 100 pps)		$\mathrm{IfP}^{\text {P }}$	1	A
	Reverse voltage		V_{R}	5	V
	Junction temperature		T_{j}	125	${ }^{\circ} \mathrm{C}$
$\grave{\circ}$ 0 O. 0	Off-state output terminal voltage		V OFF	400	V
	On-state RMS current	A connection	ION	150	mA
		B connection		200	
		C connection		300	
	On-state current derating ($\mathrm{Ta} \geq 25^{\circ} \mathrm{C}$)	A connection	$\triangle \mathrm{ON} /{ }^{\circ} \mathrm{C}$	-1.5	$\mathrm{mA} /{ }^{\circ} \mathrm{C}$
		B connection		-2.0	
		C connection		-3.0	
	Junction temperature		T_{j}	125	${ }^{\circ} \mathrm{C}$
Storage temperature range			$\mathrm{T}_{\text {stg }}$	-55~125	${ }^{\circ} \mathrm{C}$
Operating temperature range			Topr	-40~85	${ }^{\circ} \mathrm{C}$
Lead soldering temperature (10 s)			$\mathrm{T}_{\text {sol }}$	260	${ }^{\circ} \mathrm{C}$
Isolation voltage (AC, 1 min., R.H. $\leq 60 \%$) (Note 2)			$B V_{S}$	2500	Vrms

(Note 2): Device considered a two-terminal device: Pins 1, 2 and 3 shorted together, and pins 4, 5 and 6 shorted together.

Recommended Operating Conditions

Characteristic	Symbol	Min.	Typ.	Max.	Unit
Supply voltage	V_{DD}	-	-	320	V
Forward current	I_{F}	10	15	20	mA
On-state current	I_{ON}	-	-	150	mA
Operating temperature	$\mathrm{T}_{\mathrm{opr}}$	-20	-	80	${ }^{\circ} \mathrm{C}$

Circuit Connections

Individual Electrical Characteristics ($\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Characteristic		Symbol	Test Condition	Min.	Typ.	Max.	Unit
号	Forward voltage	V_{F}	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	1.2	1.4	1.7	V
	Reverse current	I_{R}	$\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$
	Capacitance	C_{\top}	$\mathrm{V}=0, \mathrm{f}=1 \mathrm{MHz}$	-	30	-	pF
¢	Off-state current	IOFF	$\mathrm{V}_{\text {OFF }}=400 \mathrm{~V}$	-	-	1	$\mu \mathrm{A}$
	Capacitance	CofF	$V=0, f=1 \mathrm{MHz}$	-	-	-	pF

Coupled Electrical Characteristics ($\mathrm{Ta}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Characteristic		Symbol	Test Condition	Min.	Typ.	Max.	Unit
Trigger LED current		$\mathrm{I}_{\text {FT }}$	$\mathrm{ION}=150 \mathrm{~mA}$	-	1	5	mA
On-state resistance	A connection	R_{ON}	$\mathrm{I}_{\mathrm{ON}}=150 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	-	8	12	Ω
	B connection		$\mathrm{I}_{\mathrm{ON}}=200 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	-	4	6	
	C connection		$\mathrm{I}_{\mathrm{ON}}=300 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	-	2	3	

Isolation Characteristics ($\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Characteristic	Symbol	Test Condition	Min.	Typ.	Max.	Unit
Capacitance input to output	Cs	$\mathrm{V}_{\mathrm{S}}=0, \mathrm{f}=1 \mathrm{MHz}$	-	0.8	-	pF
Isolation resistance	R_{S}	$\mathrm{V}_{\mathrm{S}}=500 \mathrm{~V}$, R.H. $\leq 60 \%$	5×10^{10}	10^{14}	-	Ω
Isolation voltage	$B V_{S}$	AC, 1 minute	2500	-	-	Vrms
		AC, 1 second (in oil)	-	5000	-	
		DC, 1 minute (in oil)	-	5000	-	V_{DC}

Switching Characteristics ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Characteristic	Symbol	Test Condition	Min.	Typ.	Max.	Unit
Turn-on time	ton	$\begin{aligned} & V_{D D}=20 \mathrm{~V}, R_{L}=200 \Omega \\ & I_{F}=10 \mathrm{~mA} \end{aligned}$ (Note 3)	-	0.3	1.0	ms
Turn-off time	toff		-	0.2	1.0	

(Note 3): Switching time test circuit

RESTRICTIONS ON PRODUCT USE

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.).These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties.
- GaAs(Gallium Arsenide) is used in this product. The dust or vapor is harmful to the human body. Do not break, cut, crush or dissolve chemically.
- Please contact your sales representative for product-by-product details in this document regarding RoHS compatibility. Please use these products in this document in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring as a result of noncompliance with applicable laws and regulations.

