FEATURES

- Choose from among the following memory density options:

IDT72P51749 — Total Available Memory $=1,179,648$ bits
IDT72P51759 — Total Available Memory = 2,359,296 bits
IDT72P51769 — Total Available Memory = 4,718,592 bits

- Configurable from 1 to 128 Queues
- Default configuration of 128 or 64 symmetrical queues
- Default multi-queue device configurations
-IDT72P51749: $256 \times 36 \times 128 Q$
- IDT72P51759: $512 \times 36 \times 128 Q$
- IDT72P51769: 1,024 x $36 \times 128 Q$
- Default configuration can be augmented via the queue address bus
- Number of queues and individual queue sizes may be configured at master reset though serial programming
- 200 MHz High speed operation (5ns cycle time)
- 3.6ns access time
- Independent Read and Write access per queue
- User Selectable Bus Matching Options:
- x36 in to x36 out -x18 in to x36 out
$-x 9$ in to $\times 36$ out
$-x 36$ in to x180ut $-x 18$ in to x18 out
$-\times 9$ in to $\times 18$ out
-x36in to x9out -x18 in to x9 out
$-x 9$ in to $x 9$ out
- User selectable I/O: 1.5V HSTL, 1.8V eHSTL, or 2.5V LVTTL
- 100% Bus Utilization, Read and Write on every clock cycle
- Selectable First Word Fall Through (FWFT) or IDT standard mode of operation
- Ability to operate on packet or word boundaries
- Mark and Re-Write operation
- Mark and Re-Read operation
- Individual, Active queue flags ($\overline{\mathrm{OR}} / \overline{\mathrm{EF}}, \overline{\mathrm{IR}} / \overline{\mathrm{FF}}, \overline{\mathrm{PAE}}, \overline{\mathrm{PAF}}, \overline{\mathrm{PR}})$
- 8 bit parallel flag status on both read and write ports
- Direct or polled operation of flag status bus
- Expansion of up to 256 queues
- JTAG Functionality (Boundary Scan)
- Available in a 256 -pin PBGA, 1 mm pitch, $17 \mathrm{~mm} \times 17 \mathrm{~mm}$
- HIGH Performance submicron CMOS technology
- Industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ is available

FUNCTIONAL BLOCK DIAGRAM

MULTI-QUEUE FLOW-CONTROL DEVICE

Table of Contents

Features 1
Description 5
Pin configuration 7
Detailed description 8
Pin descriptions 10
Pin number table 16
Recommended DC operating conditions 17
Absolute maximum ratings 17
DC electrical characteristics 18
AC electrical characteristics 20
Functional description 22
Serial Programming 23
Default Programming 23
Parallel Programming 23
Queue description 25
Configuration of the IDT Multi-queue flow-control device 25
Standard mode operation 26
Read Queue Selection and Read Operation 27
Switching Queues on the Write Port 29
Switching Queues on the Read Port 31
Flag description 42
PAFn Flag Bus Operation 42
Full Flag Operation 42
Empty or Output Ready Flag Operation ($\overline{\mathrm{EF}} / \overline{\mathrm{OR}}$) 42
Almost Full Flag 43
Almost Empty Flag 43
Packet Ready Flag 47
Packet Mode Demarcation bits 49
JTAG Interface 82
JTAG AC electrical characteristics 86
Ordering Information 87
Table 1-Device programming mode comparison 22
Table 2 - Setting the queue programming mode during master reset 22
Table 3-Mode Configuration 25
Table 4 — Write Address Bus, WRADD[7:0] 26
Table 5 - Read Address Bus, RDADD[7:0] 27
Table 6-Write Queue Switch Operation 30
Table 7-Read Queue Switch Operation 32
Table 8-Same Queue Switch 32
Table 9 - Flag operation boundaries and Timing 45
Table 10 - Packet Mode Valid Byte for x36 bit word configuration 48
Table 11 —Bus-Matching Set-Up 52

List of Figures

Figure 1. Multi-Queue Flow-Control Device Block Diagram 6
Figure 2a. AC Test Load 19
Figure 2b. Lumped Capacitive Load, Typical Derating 19
Figure 3. Reference Signals 22
Figure 4. Device Programming Hierarchy 24
Figure 5. IDT Standard mode illustrated (Read Port) 25
Figure 6. First Word Fall Through (FWFT) mode illustrated (Read Port) 25
Figure 7. Write Port Switching Queues Signal Sequence 29
Figure 8. Switching Queues Bus Efficiency 29
Figure 9. Simultaneous Queue Switching 30
Figure 10. Read Port Switching Queues Signal Sequence 31
Figure 11. Switching Queues Bus Efficiency 31
Figure 12. Simultaneous Queue Switching 32
Figure 13. MARK and Re-Write Sequence 33
Figure 14. MARK and Re-Read Sequence 33
Figure 15. MARKing a Queue in Packet Mode - Write Queue MARK 34
Figure 16. MARKing a Queue in Packet Mode - Read Queue MARK 34
Figure 17. UN-MARKing a Queue in Packet Mode - Write Queue UN-MARK 35
Figure 18. UN-MARKing a Queue in Packet Mode - Read Queue UN-MARK 35
Figure 19. MARKing a Queue in FIFO Mode - Write Queue MARK 37
Figure 20. MARKing a Queue in FIFO Mode - Read Queue MARK 37
Figure 21. UN-MARKing a Queue in FIFO Mode - Write Queue UN-MARK 38
Figure 22. UN-MARKing a Queue in FIFO Mode - Read Queue UN-MARK 38
Figure 23. Leaving a MARK active on the Write Port 39
Figure 24. Leaving a MARK active on the Read Port 39
Figure 25. Inactivating a MARK on the Write PortActive 40
Figure 26. Inactivating a MARK on the Read Port Active 40
Figure 27. 36bit to 36bit word configuration 49
Figure 28. 36bit to 18bit word configuration 49
Figure 29. 36bit to 9bit word contiguration 49
Figure 30. 18bit to 36bit word configuration 50
Figure 31. 18bit to 18bit word configuration 50
Figure 32. 18bit to 9bit word configuration 50
Figure 33. 9bit to 36bit word contiguration 51
Figure 34. 9bit to 18bit word configuration 51
Figure 35. 9bit to 9bit word configuration 51
Figure 36. Bus-Matching Byte Arrangement 53
Figure 37. Master Reset 54
Figure 38. Default Programming 55
Figure 39. Parallel Programming 56
Figure 40. Queue Programming via Write Address Bus 57
Figure 41. Queue Programming via Read Address Bus 57
Figure 42. Serial Port Connection for Serial Programming 57
Figure 43. Serial Programming (2 Device Expansion) 58
Figure 44. Write Queue Select, Write Operation and Full Flag Operation 59
Figure 45. Write Queue Select, Mark and Rewrite 60
Figure 46. Write Operations in First Word Fall Through mode 61
Figure 47. Full Flag Timing in Expansion Configuration 62
Figure 48. Read Queue Select, Read Operation (IDT mode) 63
Figure 49. Read Queue Select, Read Operation (FWFT mode) 64
Figure 50. Read Queue Select, Mark and Reread (IDT mode) 65
Figure 51. Output Ready Flag Timing (In FWFT Mode) 66
Figure 52. Read Queue Selection with Read Operations (IDT mode) 67
Figure 53. Read Queue Select, Read Operation and $\overline{\mathrm{EE}}$ Timing 68
Figure 54. Writing in Packet Mode during a Queue change 69

List of Figures (Continued)

Figure 55. Reading in Packet Mode during a Queue change 70
Figure 56. Writing Demarcation Bits (Packet Mode) 71
Figure 57. Data Output (Receive) Packet Mode of Operation 72
Figure 58. Almost Full Flag Timing and Queue Switch 73
Figure 59. Almost Full Flag Timing 73
Figure 60. Almost Empty Flag Timing and Queue Switch (FWFT mode) 74
Figure 61. Almost Empty Flag Timing 74
Figure 62. $\overline{\text { PAE }} / / \overline{\text { PRn }}$ - Direct Mode - Status Word Selection 75
Figure 63. $\overline{\text { PAF }}$ - Direct Mode - Status Word Selection 75
Figure 64. $\overline{\text { PAEn }}$ - Direct Mode, Flag Operation 76
Figure 65. $\overline{\text { PAF }}$ - Direct Mode, Flag Operation 77
Figure 66. $\overline{\text { PAFn }}$ Bus - Polled Mode 78
Figure 67. Expansion using ID codes 79
Figure 68. Expansion using $\overline{\mathrm{WCS}} / \overline{\mathrm{RCS}}$ 80
Figure 69. Expansion Connection Read Chip Select ($\overline{\mathrm{RCS}})$ 81
Figure 70. Expansion Connection Write Chip Select ($\overline{\mathrm{WCS}}$) 81
Figure 71. Boundary Scan Architecture 82
Figure 72. TAP Controller State Diagram 83
Figure 73. Standard JTAG Timing 86

DESCRIPTION

The IDT72P51749/72P51759/72P51769 multi-queue flow-control devices are single chips with up to 128 discrete configurable FIFO queues. All queues withinthedevice have commondatainputbus, (writeport) and acommondata outputbus, (read port). Data written into the write port is directed to a specific queue via an internal de-multiplex operation, addressed by the write address bus(WRADD). Data read fromthe read portis accessed from a specific queue via an internal multiplex operation, addressed by the read address bus (RDADD). Data writes and reads can be performed at high speeds up to 200 MHz , with access times of 3.6 ns . Data write and read operations are totally independent of each other, a queue maybe selected on the write port and a different queue on the read port or both ports may select the same queue simultaneously.

The device provides Fullflag and Empty flag status for the queue selected for write and read operations respectively. Also a Programmable Almost Full and Programmable Almost Empty flag for each queue is provided. Two 8 bit programmable flag busses are available, providing status of queues not selected for write or read operations. When 8 or less queues are configured inthe device theseflagbusses provide an individual flag perqueue, when more than 8queues are used, eithera Polled or Directmode bus operation provides the flag busses with all queues status.

Bus Matching is available on this device, either port can be 9 bits, 18 bits or 36 bits wide. When Bus Matching is used the deviceensures the logical transfer of data throughput in a Little Endian manner.

A packetmode of operation is also provided. Packetmode provides a packet ready flag output $(\overline{\mathrm{PR}})$ indicating when at least one (or more) packets of data
within aqueue is availablefor reading. The Packet Ready indicatoris generated upondetection of the startand end of packetdemarcationbits. The multi-queue device then provides the user with an internally generated packet ready status per queue.
The user has full flexibility configuring queues within the device, being able to program the total number of queues between 1 and 128 , the individual queue depths being independent of each other. The programmable flag positions are also user programmable. All programming is done via a dedicated serial port. If the user does not wishto program the multi-queue device, a default option is available that configures the device in a predetermined manner.

A Master Reset must be provided to the device. A Master Reset latches in configuration/setup pins andmustbe performed before further programming of thedevice cantakeplace. Onthe rising edge of master resetthe deviceoperating mode is set, the device programming mode(serial, parallel ordefault) is setand the expansion configuration device type (master or slave) is set.
The multi-queue flow-control device has the capability of operating its I/O in either2.5VLVTTL, 1.5VHSTLor1.8V eHSTL mode. Thetype of I/Ois selected viathe IOSEL input. The core supply voltage (VDD) to the multi-queue is 1.8 V , however the output levels can be set independently via a separate supply, VDDQ.

AJTAG test port is provided, here the multi-queueflow-control device has afullyfunctional Boundary Scanfeature, compliantwithIEEE 1149.1 Standard TestAccess Portand Boundary Scan Architecture.

See Figure 1, Multi-Queue Flow-Control Device Block Diagram for an outline of the functional blocks withinthe device.

Figure 1. Multi-Queue Flow-Control Device Block Diagram

PIN CONFIGURATION

PBGA (BB256-1, order code: BB) TOP VIEW

DETAILED DESCRIPTION

mULTI-QUEUE STRUCTURE

The IDT multi-queue flow-control device has a single data input port and single data outputportwith up to 128 FIFO queues in parallel buffering between the two ports. The usercan setup between 1 and 128Queues withinthe device. Thesequeues canbe configured to utilize the total availablememory, providing the userwithfull flexibility andability to configurethequeuesto be various depths, independent of one another.

MEMORYORGANIZATION/ALLOCATION

The memory is organized into what is known as "blocks", each block being 256×36 bits. When the user is configuring the number of queues and individual queue sizes the user mustallocate the memory to respective queues, in units of blocks, that is, a single queue can be made up from 0 to mblocks, wherem is the total number of blocks available within a device. Also the total size of any given queue must be in increments of 256×36. For the IDT72P51749, IDT72P71759 and IDT72P51769the Total AvailableMemory is 128,256, and 512 blocks respectively (ablockbeing 256×36). Queues canbebuiltfrom these blocks to make any size queue desired and any number of queues desired.

BUS WIDTHS

The inputportis commonto all queues within the device, as isthe outputport. The device providestheuserwith BusMatching options such thatthe inputport and output port can be either $\mathrm{x} 9, \mathrm{x} 18$ or x 36 bits wide, the read and write port widths can be set independently of one another. Because a ports are common to all queues the width of the queues is not individually set. The input width of all queues are the same and the output width of all queues are the same.

WRITING TO \& READING FROM THE MULTI-QUEUE

Data being written into the device via the input port is directed to a discrete queue viathe write queue address input. Conversely, data being read from the device read portis readfrom aqueue selected viathe readqueue addressinput. Data can be simultaneously written into and read from the same queue or different queues. Once a queue is selected for data writes or reads, the writing and reading operation is performed in the same manner as a conventional IDT synchronous FIFO, utilizing clocks and enables, there is a single clock and enable per port. When a specific queue is addressed on the write port, data placed onthe datainputs is writtento that queue sequentially based onthe rising edge of a write clock provided setup and hold times are met. Conversely, data is read on to the output port after an access time from a rising edge on a read clock.

Theoperation ofthe write port is comparable to the function of a conventional FIFO operating in standard IDT mode. Write operations can be performed on the writeportprovidedthatthequeue currently selected is notfull, afullflagoutput provides status of the selected queue. The operation of the read port is comparable to the function of a conventional FIFO operating in FWFT mode. When a queue is selected on the output port, the next word in that queue will automatically fall throughto the output register. All subsequent words from that queue require an enabled read cycle. Data cannot be read from a selected queue if that queue is empty, the read port provides an Empty flag indicating when data read out is valid. If the user switches to a queue that is empty, the last word from the previous queue will remain on the outputbus. In addition to FirstWord Fall Through (FWFT) the device can operate in IDT Standard mode or packet mode. In IDT Standard mode the read port provides a word to the outputbus (Qout)for each clock cyclethat $\overline{\mathrm{REN}}$ is asserted. Referto Figure 48, Read Queue Select, Read Operation (IDTMode). In packetmode the device asserts a packet ready status flag to indicate one or more packets are available for reading.

As mentioned, the write porthas afullflag, providing full status of the selected queue. Along with the full flaga dedicatedalmostfull flagis provided, this almost full flag is similar to the almostfull flag of a conventional IDTFIFO. The device provides a user programmable almost full flag for all 128 queues and when a respective queue is selected on the writeport, the almostfull flag provides status for that queue. Conversely, the read port has an Empty flag, providing status of the data being read from the queue selected on the read port. As well as the Empty flagthe device provides adedicated almostempty flag. This almostempty flag is similar to the almost empty flag of a conventional IDT FIFO. The device provides a user programmable almost empty flag for each 128 queues and when a respective queue is selected on the read port, the almost empty flag provides status for that queue.

PROGRAMMABLE FLAG BUSSES

In additiontothesededicatedflags, full \&almostfull onthe write portandOutput Ready \& almost empty on the read port, there are two flag status busses. An almostfullflag status bus is provided, thisbus is 8bits wide. Also, analmostempty flag status bus is provided, again this bus is 8 bits wide. The purpose of these flagbusses is to providetheuserwithameans by whichtomonitorthe datalevels within queues that may notbe selected on the write or read port. As mentioned, the device provides almostfull and almostempty registers (programmable by the user) for each of the 128 queues in the device.

In the IDT72P51749/72P51759/72P51769 multi-queue flow-control devices the user has the option of utilizing anywhere between 1 and 128 queues, therefore the 8 bitflag status busses are multiplexed between the 128 queues, aflag bus can only provide status for 8 of the 128 queues at any moment, this is referred to as a "Status Word", such that whenthe bus is providing status of queues 1 through 8 , this is status word 1 , when it is queues 9 through 16 , this isstatus word 2 and so on up to statusword 16. Iflessthan 128 queues are setup inthedevice, there arestill 4 status words, suchthat in "Polled" mode of operation the flagbus will still cycle through 4 status words. Iffor example only 22 queues are setup, status words 1 and 2 will reflect status of queues 1 through 8 and 9 through 16 respectively. Status word 3 will reflectthestatus of queues 17through 22 onthe leastsignificant6 bits, the mostsignificant2 bits of the flagbus are don't care. The remainingstatus words are not used as there are no queues to report.

The flag busses are available in two user selectable modes of operation, "Polled" or "Direct". When operating in polled mode aflag bus provides status of each status word sequentially, that is, on each rising edge of a clock the flag bus is updated to show the status of each status word in order. The rising edge of the write clock will update the almost full bus and a rising edge on the read clock will updatethealmostemptybus. Themode of operationis alwaysthe same forboth the almostfull and almostempty flag busses. When operating in direct mode, the status word on the flag bus is selected by the user. So the user can actually address the status word to be placed on the flag status busses, these flag busses operate independently of one another. Addressing of the almostfull flag bus is done via the write port and addressing of the almostempty flag bus is done via the read port.

PACKETREADY

The multi-queue flow-control device also offers a "PacketMode" operation. PacketMode is userselectable. In packetmode with ax36 bitword length, users can define the length of packets or frame by using the two mostsignificant bits of the word. In a 36-bitword, bit 34 is used to mark the Start of Packet (SOP) and bit 35 is used to mark the End of Packet(EOP) as shown in Table 10. When writing data into a given queue, the first word being written is marked, by the user setting bit 34 as the "Start of Packet" (SOP) and the last word written is marked as the "End of Packet" (EOP) with all words written between the Start of Packet (SOP) marker (bit 34) and the End of packet (EOP) packet marker
(bit35)constituting theentire packet. A packetcanbeanylengththeuserdesires, up to the total available memory in the multi-queue device. The device monitors theSOP (bit34) and looks forthe word that containstheEOP (bit35). The read portissupplied withanadditional statusflag, "PacketReady". ThePacketReady $(\overline{\mathrm{PR}})$ flag in conjunction with Empty Flag or Output Ready flag ($\overline{\mathrm{EF}} / \overline{\mathrm{OR}})$ indicates when at least one packet is available to read. When in packetmode the almostempty flag status, provides packet ready flag status for individual queues.

EXPANSION (IDT STANDARD MODE)

Expansion of multi-queue devices is also possible, up to 2 devices can be connected in a parallelfashion providing the possibility of both depth expansion orqueue expansion. Expansion of devices is supported only in IDT Standard mode. Depth Expansion means expanding the depths of individual queues.

Queue expansion means increasing the total number of queues available. Depth expansion is possible by virtue of thefact that more memory blocks within amulti-queue device canbe allocatedto afewernumber of queues to increase the depth of each queue. For example, depth expansion of 2 devices provides the possibility of 8 queues of 4096 K bits, each queue being setup within a single device utilizing all memory blocks available to produce a single queue. This is the deepest queue that can setup within a device.

For queue expansion a maximum number of 256 queues (2×128 queues) may be setup. Iffewer queues are desired, then more memory blocks will be available to increase queue depths if desired. When connecting multi-queue devices in expansionconfiguration all respective inputpins (data \& control) and outputpins (data \& flags), should be "connected" togetherbetween individual devices. Refer to Figure 67, Expansion using ID codes, and Figure 68, Expansion using $\overline{W C S} / \overline{R C S}$ for device connection details.

PIN DESCRIPTIONS

 (Pin No.)	Name	I/OTYPE	Description
$\begin{array}{\|l} \hline \text { BM [3:0] } \\ (\mathrm{J1}, \mathrm{~L} 14,15,16) \end{array}$	Bus Matching	HSTL-LVTTL INPUT	These pins define the bus width of the input write port and the output read port of the device. The bus widths are set during a Master Rest cycle. The BM[3:0] signals must meet the setup and hold time requirements of Master Resetand mustnottoggle/change state aftera Master Reset cycle.
D[35:0] Din (See Pin No. tablefordetails)	DatalnputBus	HSTL-LVTTL INPUT	These are the 36 data input pins. Data is written into the device via these input pins on the rising edge of WCLK provided that WEN is LOW. Note, that in Packet mode D32-D35 may be used as packet markers, please see packetready functional discussion for more detail. Due to bus matching notall inputs may be used, any unused inputs should be tied LOW. D[35] Transmit End of Packet (TEOP) D[34] Transmit Start of Packet (TSOP) D[33:32] Userdefinable bits D[31:0] Data inputbits
DF ${ }^{(1)}$ (L3)	DefaultFlag	HSTL-LVTTL INPUT	Ifthe user requires default programming of the multi-queue device, this pin mustbe setup before Master Reset and mustnottoggle during any device operation. The state of this inputatmaster reset determines the value of the $\overline{\text { PAE }}$ /PAF flag offsets. If DF is LOW the value is 8 , if $D F$ is HIGH the value is 128 .
$\mathrm{DFM}^{(1)}$ (L2)	Defaul Mode	HSTL-LVTTL INPUT	The multi-queue device requires programming after master reset. The user can do this serially via the serial port, orvia parallel programming orby the default programming option The default programming option provides a pre-defined contiguration. IfDFM is LOW at master reset then serial mode will be selected, ifHIGH then defaultmode is selected.
$\overline{\mathrm{EF} / \mathrm{OR}}$ (P9)	Empty Flag/ OutputReady	HSTL-LVTTL OUTPUT	This signal is bi-modal. When IDT Standard mode is selected the pin provides Empty Flag ($\overline{\mathrm{FF}}$) status. When FWFT mode is selected the pin provides outputready ($\overline{\mathrm{OR}})$ status. This outputflagprovides Output Ready status for the data word present on the multi-queue flow-control device data outputbus, Qout in FWFT mode. This flag is a2-stage delayed to match the data output path delay. There is a3RCLK cycle delay in IDTStandard mode and a 4 cycle delay for FWFT mode from the time a given queue is selected for reads, tothe time the $\overline{\mathrm{R}}$ flag represents the datainthatqueue. When aselected queue on the read port is readto empty, the $\overline{\mathrm{OR}}$ flag will go HIGH, indicatingthatdataon the outputbus is notvalid. The $\overline{\mathrm{R}}$ flagalso has High-Impedance capability,required when multipledevices are usedandthe $\overline{\mathrm{OR}} \mathrm{flags}$ aretied together.
$\begin{array}{\|l} \hline \text { ESTR } \\ \text { (R15) } \end{array}$	$\overline{\text { PAEn Flag Bus }}$ Strobe	HSTL-LVTTL INPUT	Ifdirect operation of the $\overline{\text { PAEn }}$ bus has been selected, the ESTR inputis used in conjunction with RCLK and the RDADD bus to selecta status word of queues to be placed on to the $\overline{\text { PAEn bus outputs. A status }}$ word addressed viathe RDADD bus is selected on the rising edge of RCLK provided thatESTR is HIGH. If Polled operations has been selected, ESTR should betied inactive, LOW. Note, thata $\overline{\text { PAEn flag bus }}$ selection cannotbe made, (ESTR mustNOT goactive) until programming of the parthas been completed and $\overline{S E N O}$ has gone LOW.
$\begin{aligned} & \begin{array}{l} \text { ESYNC } \\ \text { (R16) } \end{array} \end{aligned}$	$\overline{\text { PAEn Bus Sync }}$	HSTL-LVTTL OUTPUT	ESYNC is an outputfrom the multi-queue device that provides a synchronizing pulse forthe $\overline{\text { PAEn bus }}$ during Polled operation of the $\overline{\text { PAEn bus. During Polled operation each status word of queue statusflags }}$ is loaded on to the $\overline{\text { PAEn }}$ bus outputs sequentially based on RCLK. The first RCLK rising edge loads status word 1 on to $\overline{\text { PAEn, the second RCLK rising edge loads status word } 2 \text { and so on. The fifth RCLK }}$ rising edge will again load status word 1. During the RCLK cycle that status word 1 of a selected device is placed on to the $\overline{\text { PAEn bus, the ESYNC output will be HIGH. For all other status words of that device, }}$ the ESYNC outputwill beLOW.
EXI (T16)	$\overline{\text { PAEn Bus }}$ Expansion In	HSTL-LVTTL INPUT	The EXI input is used when multi-queue devices are connected in expansion configuration and Polled EXI receives atoken from the previous device in a chain. In single device mode the EXI input mustbe tied input mustbe connected to the EXO output of the same device. In expansion configuration the EXI of the first device should be tied LOW, when direct mode is selected.
$\begin{array}{\|l\|} \hline \text { EXO } \\ \text { (T15) } \end{array}$	$\overline{\text { PAEn Bus }}$ ExpansionOut	HSTL-LVTTL OUTPUT	EXO is an output thatis used when multi-queue devices are connected in expansion configuration and This pin pulses when device N has placed its final (4th) status word on to the $\overline{\text { PAEn }}$ bus with respect to RCLK. This pulse (token) is then passed on to the next device in the chain ' $N+1$ ' and on the next RCLK rising edge the firststatus word of device $\mathrm{N}+1$ will be loaded ontothe $\overline{\text { PAEn bus. This continues through }}$ the chain and EXO of the last device is then looped back to EXI of the first device. The ESYNC output of each device in the chain provides synchronization to the user of this looping event.

PIN DESCRIPTIONS (CONTINUED)

Symbol \& Pin No.	Name	I/OTYPE	Description
$\begin{array}{\|l} \hline \overline{\mathrm{FF} / / \overline{\mathrm{R}}} \\ \text { (P8) } \end{array}$	Full Flag/ Input Ready	HSTL-LVTTL OUTPUT	This pin provides the full flag output for the active Queue, that is, the queue selected on the input port forwriteoperations, (selected viaWCLK,WRADDbus andWADEN). Onthe3rdWCLK cycle afteraqueue selection, this flag will show the status of the newly selected queue. Data can be written to this queueon the next cycle provided $\overline{\mathrm{FF}}$ is HIGH. This flag has High-Impedance capability, this is important during expansion of devices, whenthe $\overline{F F}$ flag output of upto2devices may be connected together on a common line. The device with a queue selected takes control of the $\overline{\mathrm{FF}}$ bus, all other devices place their $\overline{F F}$ output into High-Impedance. When a queue selection is made on the write port this output will switch from High-Impedance control on the next WCLK cycle. This flag is synchronized to WCLK.
$\begin{aligned} & \mathrm{FM}^{(1)} \\ & (\mathrm{K} 16) \end{aligned}$	Flag Mode	HSTL-LVTTL INPUT	This pin is setup before a master reset and must not toggle during any device operation. The state of the FM pinduring Master Resetwill determine whetherthe $\overline{\text { PAFnand }} \overline{\text { PAE }}$ flagbusses operatein eitherPolled or Direct mode. If this pin is HIGH the mode is Polled, if LOW then it will be Direct.
$\begin{aligned} & \text { FSTR } \\ & \text { (R4) } \end{aligned}$	$\overline{\text { PAFn Flag Bus }}$ Strobe	HSTL-LVTTL INPUT	Ifdirect operation of the $\overline{\mathrm{PAF}}$ n bus has been selected, the FSTR input is used in conjunction with WCLK and theWRADD bus to selecta status word of queues to be placed on to the $\overline{\text { PAF }}$ n bus outputs. A status word addressed viatheWRADD bus is selected on the rising edge ofWCLK provided that FSTR is HIGH. If Polled operations has been selected, FSTR should be tied inactive, LOW. Note, thata $\overline{\text { PAF }}$ nflag bus selection cannotbe made, (FSTR mustNOT goactive) until programming of the parthas been completed and $\overline{\text { SENO }}$ has gone LOW.
FSYNC (R3)	$\overline{\text { PAFn Bus Sync }}$	$\begin{aligned} & \text { HSTL-LVTTL } \\ & \text { OUTPUT } \end{aligned}$	FSYNC is an output from the multi-queue device that provides a synchronizing pulse for the $\overline{\mathrm{PAF}}$ n bus during Polled operation of the $\overline{\text { PAF }}$ bus. During Polled operation each status word of queue statusflags is loaded on to the $\overline{\text { PAF }}$ n bus outputs sequentially based on WCLK. The first WCLK rising edge loads status word 1 on to $\overline{\text { PAFn }}$, the second WCLK rising edge loads status word 2 and so on. The fifth WCLK rising edge will again load status word 1. During the WCLK cycle that status word 1 of a selected device is placed on to the $\overline{\mathrm{PAF}}$ n bus, the FSYNC output will be HIGH. For all other status words of that device, the FSYNC output will be LOW.
$\begin{aligned} & \overline{\mathrm{FWWFT}} \\ & \text { (R11) } \end{aligned}$	FirstWord Fall Through	HSTL-LVTTL INPUT	Firstword fall through (FWFT) or IDT Standard mode is selected during a Master Reset cycle. To select FWFT mode assertthe FWFT signal = LOW, if FWFT = HIGH during the master reset then IDT Standard mode is selected.
$\begin{array}{\|l\|l\|} \hline \text { FXI } \\ \text { (T2) } \end{array}$	$\overline{\text { PAFn Bus }}$ Expansion In	HSTL-LVTTL INPUT	The FXI input is used when multi-queue devices are connected in expansion configuration and Polled PAFn bus operation has been selected. FXI of device ' N ' connects directly to FXO of device ' $\mathrm{N}-1$ '. The FXI receives a token from the previous device in a chain. In single device mode the FXI input must be tied LOW if the $\overline{\mathrm{PAF}}$ b bus is operated in direct mode. If the $\overline{\mathrm{PAF}}$ n bus is operated in polled mode the FXI input mustbe connected to the FXO output of the same device. In expansion configurationthe FXI of the first device should betied LOW, when direct mode is selected.
FXO (T3)	$\overline{\text { PAFn Bus }}$ ExpansionOut	HSTL-LVTTL OUTPUT	FXO is an outputthat is used when multi-queue devices are connected in expansion configuration and Polled PAFn bus operation has been selected. FXO of device 'N' connects directly to FXI of device ' $\mathrm{N}+1$ 1'. This pin pulses when device N has placed its final (4th) status word on to the $\overline{\mathrm{PAF}}$ n bus with respect to WCLK. This pulse (token) is then passed on to the next device in the chain ' $\mathrm{N}+1$ ' and on the nextWCLK rising edge the first status word of device $\mathrm{N}+1$ will be loaded on to the $\overline{\mathrm{PAF}}$ n bus. This continues through the chain and FXO of the last device is then looped back to FXI of the first device. The FSYNC output of each device in the chain provides synchronization to the user of this looping event.
$\begin{aligned} & \text { ID[2:0] }{ }^{(1)} \\ & (\text { ID2-C9 } \\ & \text { ID1-A10 } \\ & \text { ID0-B10) } \end{aligned}$	Device ID Pins	HSTL-LVTTL INPUT	Forthe 128Qmulti-queue device theWRADD andRDADD address busses are 8bits wide. Whenaqueue selection takes place the 1-3MSb's of this 8 bitaddress bus are used to address the specific device (the 5-7 LSb's are used to address the queue within that device). During write/read operations the 1-3 MSb's of the address are compared to the device ID pins. In an eight device expansion configuration, the first device in a chain of multi-queue's (connected in expansion configuration), may be setup as ' 000 ' (this is referredto asthe MasterDevice), the secondas '001'and so onthroughto device8which is'111', however the ID does nothave to matchthe device order. In single device modethese pins should be setup as ' 000 ' and the 3 MSb's of the WRADD and RDADD address busses should be tied LOW. The ID[2:0] inputs setup a respective devices ID during master reset. These ID pins must not toggle during any device operation. Note, the device selected as the 'Master' mustbe ID '000'. In serial programming, the master device (ID 000) must be programmed last.

PIN DESCRIPTIONS (CONTINUED)

Symbol \& Pin No.	Name	I/O TYPE	Description
$\begin{aligned} & \text { IOSEL } \\ & \text { (C8) } \end{aligned}$	IOSelect	LVTTL INPUT	This pin is used to select either HSTL or 2.5V LVTTL operation for the I/O. If HSTL or eHSTL I/O are required then IOSEL should be tied HIGH(VDDQ). IfLVTTLI/O are required then it should be tied LOW.
$\begin{array}{\|l} \text { MAST }^{(1)} \\ \text { (K15) } \end{array}$	MasterDevice	HSTL-LVTTL INPUT	The state ofthis inputatMaster Reset determines whetheragiven device (withinachain of devices), is the Master device or a Slave. If this pin is HIGH, the device is the master if it is LOW then it is a Slave. The master device is the first to take control of all outputs after a master reset, all slave devices go to HighImpedance, preventing bus contention. If a multi-queue device is being used in single device mode, this pin mustbe setHIGH.
$\overline{\text { MRS }}$ (T9)	MasterReset	HSTL-LVTTL INPUT	Amaster resetis performed bytaking $\overline{\mathrm{MRS}}$ from HIGHtoLOW, to HIGH. Device programming is required aftermaster reset.
$\overline{\mathrm{OE}}$ (M14)	OutputEnable	HSTL-LVTTL INPUT	The Outputenable signal is an Asynchronous signal used to provide three-state control of the multi-queue data outputbus, Qout. If a device has been configured as a "Master" device, the Qout data outputs will be in a Low Impedance condition if the $\overline{\mathrm{OE}}$ input is LOW. If $\overline{\mathrm{OE}}$ is HIGH then the Qout data outputs will be in High Impedance. If a device is configured a "Slave" device, then the Qout data outputs will always be inHigh Impedance until that device has been selected onthe Read Port, at which point $\overline{\text { OE }}$ provides threestate of that respective device.
$\begin{aligned} & \overline{\mathrm{PAE}} \\ & (\mathrm{P} 10) \end{aligned}$	Programmable Almost-Empty Flag	HSTL-LVTTL OUTPUT	This pin provides the Almost-Empty flag status for the Queue that has been selected on the output port for read operations, (selected via RCLK, RDADD and RADEN). This pin is LOW when the selected Queue is almost-empty. This flag output may be duplicated on one of the $\overline{\text { PAEn }}$ bus lines. This flag is synchronized to RCLK.
$\overline{\text { PAEn }} / \overline{\text { PR }}$ ($\overline{\text { PAE }} 7-\mathrm{P} 11$ PAE6-P12 PAE5-R12 PAE4-T12 PAE3-P13 PAE2-R13 PAE1-T13 $\overline{\text { PAE } 0-T 14) ~}$	Programmable Almost-Empty FlagBus/Packet Ready Flag Bus	HSTL-LVTTL OUTPUT	On the 128Q device the $\overline{\mathrm{PAE}} \mathrm{n} / \overline{\mathrm{PR}} \mathrm{n}$ bus is 8 bits wide. During a Master Reset this bus is setup for either AlmostEmptymodeorPacketmode. This outputbusprovides $\overline{\mathrm{PAE}} / \overline{\mathrm{PR}}$ nstatus of 8 queues (1 statusword), within a selected device, having a maximum of 16 status words. During Queue read/write operations these outputs provide programmable empty flag status or packet ready status, in either direct or polled mode. The mode of flag operation is determined during master reset via the state of the FM input. Thisflagbus is capable of High-Impedance state, this is important during expansion of multi-queue devices. During directoperationthe $\overline{\mathrm{PAE}} n / \overline{\mathrm{PR}}$ nbus is updatedto show the $\overline{\mathrm{PAE}} / / \overline{\mathrm{PR}}$ status of a status word of queues within a selected device. Selection is made using RCLK, ESTR and RDADD. During Polled operation the $\overline{\text { PAE }} n / \overline{\text { PR }}$ nbus is loaded withthe $\overline{\text { PAE }} / \overline{P R}$ nstatus of multi-queueflow-control status words sequentially based on the rising edge of RCLK. $\overline{\text { PAE }}$ or $\overline{\text { PR }}$ operation is determined by the state of PKT during master reset.
$\begin{aligned} & \overline{\mathrm{PAF}} \\ & \text { (R8) } \end{aligned}$	Programmable Almost-Full Flag	HSTL-LVTTL OUTPUT	This pin provides the Almost-Full flag status for the Queue that has been selected on the input port for write operations, (selected via WCLK, WRADD and WADEN). This pin is LOW when the selected Queue is almost-full. This flag output may be duplicated on one of the $\overline{\text { PAF }}$ bus lines. This flag is synchronized to WCLK.
$\overline{\text { PAF }}$ (PAF7-P7 PAF6-P6 PAF5-R6 PAF4-R7 PAF3-P5 PAF2-R5 PAF1-T5 PAF0-T4)	Programmable Almost-Full Flag Bus	HSTL-LVTTL OUTPUT	On the 128Q device the $\overline{\mathrm{PAF}}$ n bus is 8 bits wide. At any one time this output bus provides $\overline{\mathrm{PAF}}$ status of 8 queues (1 status word), withina selected device, having amaximum of 16 status words. During Queue read/write operationsthese outputs provide programmablefullflagstatus, in eitherdirector polledmode. The mode of flag operation is determined during master reset via the state of the FM input. This flag bus iscapable of High-Impedancestate, this is importantduring expansion of multi-queue devices. During direct operation the $\overline{\text { PAF }}$ bus is updated to show the $\overline{\mathrm{PAF}}$ status of a status word of queues within a selected device. Selection is made usingWCLK, FSTR, WRADD and WADEN. During Polled operationthe $\overline{\text { PAF }}$ bus is loaded with the $\overline{\mathrm{PAF}}$ status of multi-queueflow-control status words sequentially based on the rising edge of WCLK.
$\begin{aligned} & \begin{array}{l} \mathrm{PKT}^{(1)} \\ (\mathrm{J} 14) \end{array} \end{aligned}$	PacketMode	HSTL-LVTTL INPUT	The state of this pin during a Master Reset will determine whether the part is operating in Packet mode providing both a Packet Ready $(\overline{\mathrm{PR}})$ output and a Programmable Almost Empty ($\overline{\mathrm{PAE}})$ discrete output, or standard mode, providing a ($\overline{\mathrm{PAE}})$ output only. If this pin is HIGH during Master Reset the part will operate in packetmode, ifitis LOW then almostempty mode. If packetmode has been selected the read port flag bus becomes packet ready flag bus, $\overline{\mathrm{PR}}$ n and the discrete packet ready flag, $\overline{\mathrm{PR}}$ is functional. If almostempty operation has been selected then the flag bus provides almostempty status, $\overline{\text { PAE }}$ n and the discrete almostempty flag, $\overline{\mathrm{PAE}}$ is functional, the $\overline{\mathrm{PR}}$ flag is inactive and should not be connected. PacketReadyutilizesusermarked locationsto identify startand end of packets being written intothe device.

PIN DESCRIPTIONS (CONTINUED)

Symbol \& Pin No.	Name	I/O TYPE	Description
$\begin{array}{\|l\|} \hline \overline{\mathrm{PR}} \\ \text { (R9) } \end{array}$	PacketReady Flag	HSTL-LVTTL OUTPUT	If packet mode has been selected this flag output provides Packet Ready status of the Queue selected for read operations. During a master reset the state of the PKT input determines whether Packet mode of operation will be used. If Packet mode is selected, then the condition of the $\overline{\mathrm{PR}}$ flag and $\overline{\mathrm{EF}} / \overline{\mathrm{OR}}$ signal are asserted indicates a packet is ready for reading. The user must markthe start of a packet and the end of a packetwhen writing data into a queue. Using these Start Of Packet(SOP) and End OfPacket(EOP) markers, the multi-queuedevice sets $\overline{\text { PR }}$ LOW ifoneormore "complete" packets are available inthequeue. A complete packet(s) must be written before the user is allowed to switch queues.
Q[35:0] Qout (See Pin No. table for details)	DataOutputBus	HSTL-LVTTL OUTPUT	These are the 36 data outputpins. Data is read out of the device via these output pins on the rising edge of RCLK provided that $\overline{\mathrm{REN}}$ is LOW, $\overline{\mathrm{OE}}$ is LOW and the Queue is selected. Note, that in Packet Ready mode Q32-Q35 may be used as packetmarkers, please see packet ready functional discussion formore detail. Due to bus matching not all outputs may be used, any unused outputs should not be connected.
$\begin{array}{\|l} \mid \text { QSEL[1:0] } \\ \text { (QSEL1-K1 } \\ \text { QSEL0-J2 } \end{array}$	QueueSelect	HSTL-LVTTL INPUT	The QSEL pins provides various queue programming options. Refer to Table 2, for details. 1. A QSEL value of00, enables the userto program the number of Queues using the Write Address bus. 2. AQSEL value of 01, enables the userto program the number of Queues using the Read Address bus. 3. A QSEL value of 10 , Selects a configuration of 64 Queues. 4. A QSEL value of 11 , selects a configuration of 128 Queues
$\begin{aligned} & \text { RADEN } \\ & \text { (R14) } \end{aligned}$	Read Address Enable	HSTL-LVTTL INPUT	The RADEN input is used in conjunction with RCLK and the RDADD address bus to select a queue to be read from. A queue addressed via the RDADD bus is selected on the rising edge of RCLK provided that RADEN is HIGH. RADEN should be asserted (HIGH) only during aqueue change cycle(s). RADEN should not be permanently tied HIGH. RADEN cannotbeHIGH forthe same RCLK cycleas ESTR. Note, that a read queue selection cannot be made, (RADEN must NOT go active) until programming of the part has been completed and $\overline{\text { SENO }}$ has gone LOW.
$\begin{aligned} & \text { RCLK } \\ & \text { (T10) } \end{aligned}$	Read Clock	HSTL-LVTTL INPUT	When enabled by $\overline{R E N}$, the rising edge of RCLK reads data from the selected queue via the output bus Qout. The queue to be read is selected via the RDADD address bus and a rising edge of RCLK while RADEN is HIGH. A rising edge of RCLK in conjunction with ESTR and RDADD will also select the $\overline{\mathrm{PAE}} \mathrm{n} / \overline{\mathrm{PR}}$ nflag status word to be placed on the $\overline{\mathrm{PAE}} \mathrm{n} / \overline{\text { PR }}$ nbus during directflag operation. During polled flagoperationthe $\overline{\mathrm{PAE}} n / \overline{\text { PR}} \mathrm{n}$ bus is cycled with respect to RCLK and the ESYNC signal is synchronized to RCLK. The $\overline{\mathrm{PAE}}, \overline{\mathrm{PR}}$ and $\overline{\mathrm{OR}}$ outputs are all synchronized to RCLK. During device expansionthe EXO and EXI signals are based on RCLK. RCLK must be continuous and free-running.
$\begin{array}{\|l\|} \hline \overline{\mathrm{RCS}} \\ \text { (R10) } \end{array}$	Read Chip Select	HSTL-LVTTL INPUT	The $\overline{\mathrm{RCS}}$ signal in concert with $\overline{\mathrm{REN}}$ signal provides control to enable data on to the output read data bus. During a Master Reset cycle the $\overline{\mathrm{RCS}}$ it is don't care signal.
RDADD [7:0] (RDADD7-P16 RDADD6-P15 RDADD5-P14 RDADD4-N16 RDADD3-N15 RDADD2-N14 RDADD1-M16 RDADD0-M15)	Read Address Bus	HSTL-LVTTL INPUT	For the 128Q device the RDADD bus is 8 bits. The RDADD bus is a dual purpose address bus. The first function of RDADD is to selecta Queue to be readfrom. The leastsignificant 7 bits of the bus, RDADD[6:0] are used to address 1 of 128 possiblequeues within a multi-queue device. The mostsignificant 1-3bits, RDADD[7:5] are used to select 1 of 8possible multi-queue devices that may be connected in expansion mode. An in expansion configuration the 3MSb's will address a device with the matching ID code. The address present on the RDADD bus will be selected on a rising edge of RCLK provided that RADEN is HIGH, (note, that data can be placed on to the Qoutbus, readfrom the previously selected queue on this RCLKedge). Two RCLK rising edges after read queue select, data will be placed on to the Qout outputs from the newly selected queue, regardless of $\overline{R E N}$ due to the first word fall through effect. The second function of the RDADD bus is to select the status word of queues to be loaded on to the $\overline{\mathrm{PAE}} n / \overline{\mathrm{PR}}$ n bus during strobed flag mode. The least significant2 bits, RDADD[1:0] are used to select the status word of a device to be placed on the $\overline{\text { PAE }}$ bus. The mostsignificant 3 bits, RDADD[7:5] are again used to select 1 of 8 possible multi-queue devices that may be connected in expansion configuration. Address bits RDADD[4:2] are don't care during status word selection. The status word address present on the RDADD bus will be selected on the rising edge of RCLK provided that ESTR is HIGH, (note, that data can be placed on to the Qout bus, read from the previously selected Queue on this RCLK edge). Please refer to Table 5 for details on RDADD bus.
$\begin{aligned} & \overline{\mathrm{REN}} \\ & (\mathrm{~T} 11) \end{aligned}$	Read Enable	HSTL-LVTTL INPUT	The $\overline{R E N}$ input enables read operations from a selected Queue based on a rising edge of RCLK. IntheFWFTmode, aqueueto be readfrom canbe selected viaRCLK, RADEN and the RDADD address bus regardless of the state of $\overline{R E N}$. A read enable is not required to cycle the $\overline{\operatorname{PAE}} n / \overline{\mathrm{PR}} n$ bus (in polled mode) or to select the $\overline{\text { PAE }}$ status word, (in direct mode).

PIN DESCRIPTIONS (CONTINUED)

 (Pin No.)	Name	I/O TYPE	Description
$\begin{aligned} & \text { SCLK } \\ & \text { (N3) } \end{aligned}$	SerialClock	HSTL-LVTTL INPUT	If serial programming of the multi-queue device has been selected during master reset, the SCLK input clocks the serial data throughthe multi-queue device. Data setup on the Sl inputis loaded intothe device on the rising edge of SCLK provided that SENN is enabled, LOW. When expansion of devices is performed the SCLK of all devices should be connected to the same source.
$\begin{aligned} & \overline{\mathrm{SENI}} \\ & \text { (M2) } \end{aligned}$	Serial Input Enable	HSTL-LVTTL INPUT	During serial programming of a multi-queue device, data loaded onto the Sl input will be clocked into the part (via a rising edge of SCLK), provided the SENI input of that device is LOW. If multiple devices are cascaded, the $\overline{\text { SENl input should be connected tothe } \overline{\text { SENO }} \text { output of the previous device. So when serial }}$ loading of a given device is complete, its $\overline{\mathrm{SENO}}$ output goes LOW, allowing the next device in the chain to be programmed ($\overline{\mathrm{SENO}}$ will follow $\overline{\mathrm{SENI}}$ of a given device once that device is programmed). The $\overline{\mathrm{SENI}}$ input of the master device (or single device), should be controlled by the user.
$\begin{aligned} & \hline \begin{array}{l} \text { SENO } \\ (\mathrm{M} 1) \end{array} \end{aligned}$	Serial Output Enable	HSTL-LVTTL OUTPUT	This output is used to indicate that serial programming or default programming of the multi-queue device has been completed. $\overline{\text { SENO}}$ follows $\overline{\mathrm{SENI}}$ once programming of a device is complete. Therefore, $\overline{\mathrm{SENO}}$ will go LOW after programming provided $\overline{\mathrm{SENN}}$ is LOW, once $\overline{\mathrm{SENI}}$ is taken HIGH again, $\overline{\mathrm{SENO}}$ will also go HIGH. When the SENO output goes LOW, the device is ready to begin normal read/write operations. If multiple devices are cascaded and serial programming of the devices will be used, the $\overline{\text { SENO }}$ output should be connected to the $\overline{\text { SENN }}$ input of the next device in the chain. When serial programming of the first device is complete, $\overline{\text { SENO }}$ will go LOW, thereby taking the $\overline{\text { SEN }}$ input of the next device LOW and so on throughout the chain. When a given device in the chain is fully programmed the $\overline{\mathrm{SENO}}$ output essentially follows the $\overline{\text { SENl }}$ input. The user should monitorthe $\overline{\mathrm{SENO}}$ output of the final device inthe chain. When this output goes LOW, serial loading of all devices has been completed.
$\left\lvert\, \begin{aligned} & \mathrm{SI} \\ & (\mathrm{~L} 1) \end{aligned}\right.$	Serial In	HSTL-LVTTL INPUT	During serial programming this pin is loaded with the serial datathat will configure the multi-queue devices. Data present on SI will be loaded on a rising edge of SCLK provided that SENI is LOW. In expansion modethe serial data inputis loaded into the firstdevice in achain. Whenthat device is loaded and its $\overline{S E N O}$ has goneLOW, the data presentonSI will be directly outputto the SO output. The SO pin of the firstdevice connects to the SI pin of the second and so on. The multi-queue device setup registers are shift registers.
$\begin{aligned} & \mathrm{SO} \\ & \text { (M3) } \end{aligned}$	Serial Out	$\begin{gathered} \text { HSTL-LVTTL } \\ \text { OUTPUT } \end{gathered}$	This output is used in expansion configuration and allows serial data to be passed through devices in the chain to complete programming of all devices. The Sl of a device connects to SO of the previous device in the chain. The SO of the final device in a chain should not be connected.
$\begin{aligned} & \begin{array}{l} \mathrm{TCK}^{(2)} \\ (\mathrm{AB}) \end{array} \end{aligned}$	JTAG Clock	HSTL-LVTTL INPUT	Clock input for JTAG function. One of four terminals required by IEEE Standard 1149.1-1990. Test operations of the device are synchronousto TCK. Datafrom TMS and TDI are sampled onthe rising edge of TCK and outputs change on the falling edge of TCK. Ifthe JTAG function is not used this signal needs to be tied to GND.
$\begin{aligned} & \hline \mathrm{TD} 1^{(2)} \\ & (\mathrm{B9}) \end{aligned}$	JTAG TestData Input	HSTL-LVTTL INPUT	One offourterminals required by IEEE Standard 1149.1-1990. During the JTAG boundary scan operation, test data serially loaded viathe TDI onthe rising edge of TCK to eitherthe Instruction Register, ID Register and Bypass Register. An internal pull-up resistor forces TDI HIGH if left unconnected.
$\begin{aligned} & \mathrm{TDO}^{(2)} \\ & \text { (A9) } \end{aligned}$	JTAG TestData Output	$\begin{gathered} \text { HSTL-LVTTL } \\ \text { OUTPUT } \end{gathered}$	One of four terminals required by IEEE Standard 1149.1-1990. During the JTAG boundary scan operation, test data serially loaded outputviathe TDO onthe falling edge of TCK from eitherthe Instruction Register, ID Register and Bypass Register. This output is high impedance except when shifting, while in SHIFT-DR and SHIFT-IR controller states.
$\begin{array}{\|l} \hline \mathrm{TMS}^{(2)} \\ \text { (B8) } \\ \hline \end{array}$	JTAG Mode Select	HSTL-LVTTL INPUT	TMS is a serial inputpin. One of fourterminals required by IEEE Standard 1149.1-1990. TMS directs the device through its TAP controller states. An internal pull-up resistorforces TMSHIGH ifleftunconnected.
$\begin{aligned} & \overline{\mathrm{TRST}}^{(2)} \\ & \text { (C7) } \end{aligned}$	JTAGReset	HSTL-LVTTL INPUT	$\overline{\text { TRST is anasynchronous resetpinfortheJTAG controller. TheJTAGTAP controllerdoes notautomatically }}$ resetupon power-up, thusitmustbe resetby eitherthissignal orby setting TMS=HIGHforfive TCK cycles. If the TAP controller is not properly reset then the outputs will always be in high-impedance. If the JTAG function is used but the user does not want to use $\overline{\mathrm{TRST}}$, then $\overline{\text { TRST }}$ can be tied with $\overline{\mathrm{MRS}}$ to ensure proper queue operation. If the JTAG function is not used then this signal needs to be tied to GND. An internal pull-up resistor forces TRSTHIGH ifleft unconnected.
$\begin{aligned} & \text { WADEN } \\ & \text { (P4) } \end{aligned}$	Write Address Enable	HSTL-LVTTL INPUT	The WADEN input is used in conjunction with WCLK and the WRADD address bus to select a queue to be written into. A queue addressed viatheWRADD bus is selected on the rising edge of WCLK provided thatWADEN is HIGH.WADEN should beasserted (HIGH) only during a queue change cycle(s). WADEN should notbe permanently tied HIGH.WADEN cannotbeHIGHfor the sameWCLK cycleas FSTR. Note,

PIN DESCRIPTIONS (CONTINUED)

Symbol \& Pin No.	Name	I/O TYPE	Description
WADEN (Continued)	Write Address Enable	HSTL-LVTTL INPUT	that a write queue selection cannotbe made, (WADEN mustNOT go active) until programming of the part has been completed and $\overline{\text { SENO }}$ has gone LOW.
WCLK (T7)	WriteClock	HSTL-LVTTL INPUT	When enabled by $\overline{W E N}$, the rising edge of WCLK writes data into the selected Queue via the input bus, Din. The Queue to be written to is selected via the WRADD address bus and a rising edge of WCLK while WADEN is HIGH. A rising edge of WCLK in conjunction with FSTR and WRADD will also select the flag status word to be placed on the $\overline{\text { PAF }}$ n bus during direct flag operation. During polled flag operation the $\overline{\mathrm{PAF}}$ n bus is cycled with respect to WCLK and the FSYNC signal is synchronized to WCLK. The $\overline{\mathrm{PAF}}, \overline{\mathrm{PAF}}$ and $\overline{\mathrm{FF}}$ outputs are all synchronized to WCLK. During device expansion the FXO and FXI signals are based on WCLK. The WCLK must be continuous and free-running.
$\overline{\text { WCS }}$ (T8)	WriteChip Select	HSTL-LVTTL INPUT	The $\overline{\mathrm{WCS}}$ pin can be regarded as a second $\overline{\text { WEN }}$ input, enabling/disabling write operations.
$\begin{aligned} & \hline \overline{\mathrm{WEN}} \\ & (\mathrm{~T} 6) \end{aligned}$	WriteEnable	HSTL-LVTTL INPUT	The $\overline{W E N}$ input enables write operations to a selected Queue based on a rising edge of WCLK. A queue to be written to can be selected via WCLK, WADEN and the WRADD address bus regardless of the state of $\overline{W E N}$. Data present on Din can be written to a newly selected queue on the secondWCLK cycle after queue selection provided that $\overline{W E N}$ is LOW. A write enable is not required to cycle the $\overline{\mathrm{PAF}} \mathrm{n}$ bus (in polled mode) or to select the $\overline{\text { PAF }}$ status word, (in direct mode).
WRADD [7:0] (WRADD7-T1 WRADD6-R1 WRADD5-R2 WRADD4-P1 WRADD3-P2 WRADD2-P3 WRADD1-N1 WRADDO-N2)	Write Address Bus	HSTL-LVTTL INPUT	For the 128 Q device the WRADD bus is 8 bits. The WRADD bus is a dual purpose address bus. The first function of WRADD is to select a Queue to be written to. The least significant 7 bits of the bus, WRADD[6:0] are used to address 1 of 128 possible queues within a multi-queue device. In expansion configurationthe mostsignificant3bits, WRADD[7:5] are usedto select 1 of 8 possible multi-queue devices (dependantonthenumber ofqueues addressed) thatmay beconnected inexpansionconfiguration. These 1-3MSb's will address a device with the matching ID code. The address present on the WRADD bus will be selected on a rising edge of WCLK provided thatWADEN is HIGH, (note, that data present on the Din bus can be written into the previously selected queue on this WCLK edge and on the next rising WCLK also, providing that $\overline{W E N}$ is LOW). Two WCLK rising edges after write queue select, data can be written into the newly selected queue. The second function of the WRADD bus is to select the status word of queues to be loaded on to the $\overline{\text { PAF }}$ n busduring strobedflag mode. The leastsignificant2bits, WRADD[1:0] are used to select the status word of a device to be placed on the $\overline{\text { PAF }}$ n bus. The most significant 3 bits, WRADD[7:5] are again used to select 1 of 8 possible multi-queue devices thatmay beconnected in expansion configuration. Addressbits WRADD[4:2] are don'tcare during status wordselection. Thestatuswordaddress presentontheWRADD bus will be selected on the rising edge of WCLK provided that FSTR is HIGH, (note, that data can be written into the previously selected queue onthisWCLKedge). Please refer to Table 4 for details on the WRADD bus.
VDD (See pg. 16)	+1.8V Supply	Power	These are VDD power supply pins and must all be connected to a +1.8 V supply rail.
VDDQ (See pg. 16)	O/P Rail Voltage	Power	These pins must be tied to the desired output rail voltage. For LVTTLI/O these pins must be connected to +2.5 V , for HSTL these pins must be connected to +1.5 V and for eHSTL these pins must be connected to +1.8 V .
GND (See pg. 16)	Ground Pin	Ground	These are Ground pins and must all be connected to the GND supply rail.
Vref (K3)	Reference Voltage	HSTL INPUT	This is a Voltage Reference input and must be connected to a voltage level determined from the table "Recommended DC Operating Conditions". The input provides the reference level for HSTL/eHSTL inputs. For LVTTL I/O mode this input should be tied to GND.

NOTES:

1. Inputs should not change after Master Reset.
2. These pins are for the JTAG port. Please refer to pages 82-86 and Figures 71-73.

PIN NUMBER TABLE

Symbol	Name	I/OTYPE	Pin Number
$\begin{aligned} & \hline D[35: 0] \\ & \text { Din } \end{aligned}$	DatalnputBus	HSTL-LVTTL INPUT	D35-J3, $D(34-32)-H(3-1), D(31-29)-G(3-1), D(28-26)-F(3-1), D(25-23)-E(3-1), D(22-20)-D(3-1)$, $D(19-17)-C(3-1), D(16,15)-B(2,1), D(14-12)-A(1-3), D 11-B 3, D 10-A 4, D 9-B 4, D 8-C 4, D 7-A 5, D 6-B 5$, D5-C5, D4-A6, D3-B6, D2-C6, D1-A7, D0-B7
$Q[35: 0]$ Qout	DataOutputBus	HSTL-LVTTL OUTPUT	$Q(35,34)-J(15,16), Q(33-31)-H(14-16), Q(30-28)-G(14-16), Q(27-25)-F(14-16), Q(24-22)-E(14-16)$, Q(21,20)-D(15,16), Q19-B16, Q(18,17)-C(16,15), Q16-D14, Q(15,14)-A(16,15), Q13-B15, Q12-A14, Q11-B14, Q10-C14, Q9-A13, Q8-B13, Q7-C13, Q6-A12, Q5-B12, Q4-C12, Q3-A11, Q2-B11, Q(1,0)-C(11,10)
VDD	+1.8V Supply	Power	$D(7-10), E(6,7,10,11), F(5,12), G(4,5,12,13), H(4,13), J(4,13), K(4,5,12,13), L(5,12), M(6,7,10,11), N(7-10)$
VDDQ	O/P Rail Voltage	Power	$D(4-6,11-13), E(4,5,12,13), F(4,13), L(4,13), M(4,5,12,13), N(4-6,11-13)$
GND	Ground Pin	Ground	$E(8-9), F(6-11), G(6-11), H(5-12), J(1,5-12), \mathrm{K}(2,6-11,14), L(6-11), M(8-9)$

ABSOLUTE MAXIMUM RATINGS

Symbol	Rating	Commercial	Unit
VTERM	TerminalVoltage with respect to GND	-0.5 to $+3.6^{(2)}$	V
TsTG	StorageTemperature	-55 to +125	${ }^{\circ} \mathrm{C}$
IOUT	DCOutputCurrent	-50 to +50	mA

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Compliant with JEDEC JESD8-5. VDD terminal only.

CAPACITANCE $\left(\mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

Symbol	Parameter ${ }^{(1)}$	Conditions	Max.	Unit
$\mathrm{CIN}^{(2,3)}$	Input Capacitance	$\mathrm{V} \mathbb{N}=0 \mathrm{~V}$	$10^{(3)}$	pF
Cout $^{(1,2)}$	Output Capacitance	Vout $=0 \mathrm{~V}$	15	pF

NOTES:

1. With output deselected, $(\overline{\mathrm{OE}} \geq \mathrm{V} I \mathrm{H})$.
2. Characterized values, not currently tested.
3. CIN for Vref is 20 pF .

RECOMMENDED DC OPERATING CONDITIONS

Symbol	Parameter	Min.	Typ.	Max.	Unit
Vdd	Supply Voltage	1.7	1.8	1.9	V
VDDQ	$\begin{array}{\|ll\|} \hline \text { Output Rail Voltage for I/Os } & - \text { LVTTL } \\ & - \text { eHSTL } \\ & - \text { HSTL } \end{array}$	$\begin{gathered} \hline 2.375 \\ 1.7 \\ 1.4 \end{gathered}$	$\begin{aligned} & 2.5 \\ & 1.8 \\ & 1.5 \end{aligned}$	$\begin{gathered} \hline 2.625 \\ 1.9 \\ 1.6 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
GND	Supply Voltage	0	0	0	V
$\mathrm{V} \mathrm{H}^{(2)}$	$\begin{aligned} \text { Input High Voltage } & \\ & - \text { LVTTL } \\ & - \text { eHSTL } \\ & - \text { HSTL }\end{aligned}$	1.7 Vref+0.2 VREF+0.2	-	$\begin{gathered} 2.625 \\ - \\ - \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
VIL	$\begin{aligned} \text { Input Low Voltage } & \\ & - \text { LVTTL } \\ & - \text { eHSTL } \\ & - \text { HSTL }\end{aligned}$	$\begin{gathered} -0.3 \\ - \\ \hline \end{gathered}$	-		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
VREF ${ }^{(1)}$ (HSTL only)	$\begin{aligned} \text { Voltage Reference Input } & - \text { eHSTL } \\ & - \text { HSTL }\end{aligned}$	$\begin{gathered} 0.8 \\ 0.68 \end{gathered}$	$\begin{gathered} 0.9 \\ 0.75 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 0.9 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
TA	Operating TemperatureCommercial	0	-	70	${ }^{\circ} \mathrm{C}$
TA	OperatingTemperature Industrial	-40	-	85	${ }^{\circ} \mathrm{C}$

NOTE:

1. VREF is only required for HSTL or eHSTL inputs. VREF should be tied LOW for LVTTL operation.
2. VIH AC Component $=\mathrm{VREF}+0.4 \mathrm{~V}$

DC ELECTRICAL CHARACTERISTICS

(Commercial: $\mathrm{VDD}=1.8 \mathrm{~V} \pm 0.10 \mathrm{~V}, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Industrial: $\mathrm{VDD}=1.8 \mathrm{~V} \pm 0.10 \mathrm{~V}, \mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Symbol	Parameter		Min.	Max.	Unit
ILI	InputLeakageCurrent		-10	10	$\mu \mathrm{A}$
ILO	OutputLeakageCurrent		-10	10	$\mu \mathrm{A}$
VoH ${ }^{(3)}$	$\begin{array}{ll} \text { OutputLogic "1"Voltage, } & \text { IOH }=-8 \mathrm{~mA} @ V \mathrm{DDQ}=2.5 \mathrm{~V} \pm 0.125 \mathrm{~V}(\mathrm{LVTTL}) \\ & \text { IOH }=-8 \mathrm{~mA} @ V \mathrm{DDQ}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V} \text { (eHSTL) } \\ & \text { IOH }=-8 \mathrm{~mA} @ \mathrm{VDQ}=1.5 \mathrm{~V} \pm 0.1 \mathrm{~V}(\mathrm{HSTL}) \\ \hline \end{array}$		VDDQ-0.4 Vdda-0.4 VDDQ-0.4	-	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
Vol	$\begin{array}{lll} \hline \text { OutputLogic "0" Voltage, } & \text { loL }=8 \mathrm{~mA} & \text { @VDDQ }=2.5 \mathrm{~V} \pm 0.125 \mathrm{~V} \text { (LVTTL) } \\ & \text { loL }=8 \mathrm{~mA} & \text { @VDDQ }=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V} \text { (eHSTL) } \\ & \text { loL }=8 \mathrm{~mA} & \text { @VDQ }=1.5 \mathrm{~V} \pm 0.1 \mathrm{~V} \text { (HSTL) } \\ \hline \end{array}$			$\begin{aligned} & 0.4 \mathrm{~V} \\ & 0.4 \mathrm{~V} \\ & 0.4 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
IDD1 ${ }^{(1,2)}$	Active VDD Current (VDD $=1.8 \mathrm{~V}$)	$\begin{aligned} & \mathrm{I} / \mathrm{O}=\mathrm{LVTTL} \\ & \mathrm{I} / \mathrm{O}=\mathrm{HSTL} \\ & \mathrm{I} / \mathrm{O}=\mathrm{eHSTL} \end{aligned}$	-	$\begin{gathered} 80 \\ 150 \\ 150 \end{gathered}$	mA mA mA
$\operatorname{IDD2}{ }^{(1,5)}$	Standby VDD Current (VDD $=1.8 \mathrm{~V}$)	$\begin{aligned} & \mathrm{I} / \mathrm{O}=\mathrm{LVTTL} \\ & \mathrm{I} / \mathrm{O}=\mathrm{HSTL} \\ & \mathrm{I} / \mathrm{O}=\mathrm{eHSTL} \end{aligned}$	- - -	$\begin{gathered} 25 \\ 100 \\ 100 \end{gathered}$	mA mA mA
$1 \mathrm{DDQ}{ }^{(1,2)}$	$\begin{aligned} & \text { Active VDDQ Current }(\mathrm{VDDQ}=2.5 \mathrm{~V} \text { LVTTL) } \\ &(\mathrm{VDDQ}=1.5 \mathrm{~V} \text { HSTL) } \\ &(\mathrm{VDDQ}=1.8 \mathrm{~V} \text { eHSTL) } \end{aligned}$	$\begin{aligned} & \mathrm{I} / \mathrm{O}=\mathrm{LVTTL} \\ & \mathrm{I} / \mathrm{O}=\mathrm{HSTL} \\ & \mathrm{I} / \mathrm{O}=\mathrm{eHSTL} \end{aligned}$	-	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	mA mA mA

NOTES:

1. Both WCLK and RCLK toggling at 20 MHz .
2. Data inputs toggling at 10 MHz .
3. Total Power consumed: PT = [(VDD x IDD) $+($ VDDQ x IDDQ) $)$.
4. Outputs are not 3.3 V tolerant.
5. The following inputs should be pulled to GND: WRADD, RDADD, WADEN, FSTR, ESTR, SCLK, SI, EXI, FXI and all Data Inputs.

The following inputs should be pulled to VDD: $\overline{\mathrm{WEN}}, \overline{\mathrm{REN}}, \overline{\mathrm{SENI}}, \overline{\mathrm{MRS}}, \mathrm{TDI}$, TMS and $\overline{\text { TRST. }}$
All other inputs are don't care and should be at a known state.

HSTL

1.5V AC TEST CONDITIONS

AC TEST LOADS

InputPulse Levels	0.25 to 1.25 V
InputRise/FallTimes	0.4 ns
InputTiming ReferenceLevels	0.75
OutputReferenceLevels	VDdo/2

NOTE:

1. $\mathrm{VDDQ}=1.5 \mathrm{~V} \pm 0.1 \mathrm{~V}$.

Figure 2a. AC Test Load

EXTENDED HSTL

1.8V AC TEST CONDITIONS

InputPulseLevels	0.4 to 1.4 V
InputRise/FallTimes	0.4 ns
InputTimingReferenceLevels	0.9
OutputReferenceLevels	$\mathrm{VDDO} / 2$

NOTE:

1. $\mathrm{VDDQ}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V}$.

2.5V LVTTL
 2.5V AC TEST CONDITIONS

InputPulse Levels	GND to 2.5 V
InputRise/FallTimes	1ns
InputTimingReferenceLevels	VDD/2
OutputReferenceLevels	VDDo/2

NOTE:

1. $V_{D D Q}=2.5 \mathrm{~V} \pm 0.125 \mathrm{~V}$.

OUTPUT ENABLE \& DISABLE TIMING

NOTE:

1. $\overline{\mathrm{REN}}$ is HIGH .

AC ELECTRICAL CHARACTERISTICS

(Commercial: $\mathrm{VDD}=1.8 \mathrm{~V} \pm 0.10 \mathrm{~V}, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Industrial: $\mathrm{VDD}=1.8 \mathrm{~V} \pm 0.10 \mathrm{~V}, \mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; JEDEC JESD8-A compliant)

Symbol	Parameter	Commercial		Com'l \& Ind' ${ }^{(1)}$		Unit
		$\begin{aligned} & \hline \text { IDT72P51749L5 } \\ & \text { IDT72P51759L5 } \\ & \text { IDT72P51769L5 } \end{aligned}$		$\begin{aligned} & \text { IDT72P51749L6 } \\ & \text { IDT72P51759L6 } \\ & \text { IDT72P51769L6 } \end{aligned}$		
		Min.	Max.	Min.	Max.	
fs	Clock Cycle Frequency (WCLK \& RCLK)	-	200	-	166	MHz
tA	Data Access Time	0.6	3.6	0.6	3.7	ns
tCLK	Clock Cycle Time	5	-	6	-	ns
tCLKH	Clock High Time	2.3	-	2.7	-	ns
tCLKL	Clock Low Time	2.3	-	2.7	-	ns
tos	Data Setup Time	1.5	-	2.0	-	ns
DH	DataHold Time	0.5	-	0.5	-	ns
tens	Enable Setup Time	1.5	-	2.0	-	ns
EENH	Enable Hold Time	0.5	-	0.5	-	ns
tRS	ResetPulse Width	30	-	30	-	ns
tRSS	ResetSetup Time	15	-	15	-	ns
tRSF	ResetOutputStatus	-	10	-	10	ns
tRSR	Reset Recovery Time	10	-	10	-	ns
tolz ($\overline{\mathrm{E}}-\mathrm{Qn})^{(2)}$	OutputEnable to Outputin Low-Impedance	0.6	3.6	0.6	$\xrightarrow{3.7}$	ns
tohz ${ }^{(2)}$	OutputEnableto OutputinHigh-Impedance	0.6	3.6	0.6	- 3.7	ns
toe	OutputEnable to Data Output Ready	0.6	3.6	0.6	- 3.7	ns
fc	Clock Cycle Frequency (SCLK)	-	10	-	10	MHz
tsCLK	Serial Clock Cycle	100	-	100	-	ns
tSCKH	Serial Clock High	45	-	45	-	ns
tSCKL	Serial Clock Low	45	-	- 45	-	ns
tSDS	Serial Dataln Setup	20	-	20	-	ns
tSDH	Serial Data In Hold	1.2	-	1.2	-	ns
tSENS	Serial Enable Setup	20	-	- 20	-	ns
tSENH	Serial Enable Hold	1.2	-	1.2	-	ns
tSDO	SCLK to Serial Data Out	-	20	-	20	ns
tSENO	SCLK to Serial Enable Out	-	20	-	20	ns
tSDOP	Serial Data Out Propagation Delay	0.6	3.7	0.6	3.7	ns
tSENOP	Serial Enable Propagation Delay	0.6	3.7	0.6	3.7	ns
tPCSF	Programming Complete to Status Flag	-	7+1 SCLK	-	7+1 SCLK	clock cycles
tAS	Address Setup	1.5	$\bigcirc-$	2.0	-	ns
taH	Address Hold	0.5	-	0.5	-	ns
twFF	Write Clock to Full Flag	-	3.6	-	3.7	ns
treF	Read Clock to Empty Flag		3.6	-	3.7	ns
tSTS	$\overline{\text { PAE/ }} \overline{\text { PAF }}$ Strobe Setup	1.5	-	1.5	-	ns
tSTH	$\overline{\text { PAE/ } / \text { PAF Strobe Hold }}$	0.5	-	0.5	-	ns
tos	QueueSetup	1.5	-	2.0	-	ns
TOH	Queue Hold	0.5	-	0.5	-	ns
twaF	WCLK to $\overline{\text { PAF fag }}$	0.6	3.6	0.6	3.7	ns
traE	RCLK to $\overline{\text { PAE flag }}$	0.6	3.6	0.6	3.7	ns
tPAF	Write Clock to Synchronous Almost-Full Flag Bus	0.6	3.6	0.6	3.7	ns
tPAE	Read Clock to Synchronous Almost-Empty Flag Bus	0.6	3.6	0.6	3.7	ns
tPAELZ ${ }^{(2)}$	RCLK to $\overline{\text { PAE Flag Bus to Low-Impedance }}$	0.6	3.6	0.6	3.7	ns
tPAEHZ ${ }^{(2)}$	RCLK to $\overline{\text { PAE Flag Bus to High-Impedance }}$	0.6	3.6	0.6	3.7	ns

NOTES:

1. Industrial temperature range product for the 6 ns is available as a standard device. All other speed grades available by special order.
2. Values guaranteed by design, not currently tested.

AC ELECTRICAL CHARACTERISTICS (CONTINUED)

(Commercial: $\mathrm{VDD}=1.8 \mathrm{~V} \pm 0.10 \mathrm{~V}, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Industrial: $\mathrm{VDD}=1.8 \mathrm{~V} \pm 0.10 \mathrm{~V}, \mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; JEDEC JESD8-A compliant)

Symbol	Parameter		ercial	Com	Ind' ${ }^{(1)}$	Unit
		$\begin{aligned} & \text { IDT72P51749L5 } \\ & \text { IDT72P51759L5 } \\ & \text { IDT72P51769L5 } \end{aligned}$		$\begin{aligned} & \text { IDT72P51749L6 } \\ & \text { IDT72P51759L6 } \\ & \text { IDT72P51769L6 } \end{aligned}$		
		Min.	Max.	Min.	Max.	
tPAFLZ ${ }^{(2)}$	WCLK to $\overline{\text { PAF }}$ Flag Bus to Low-Impedance	0.6	3.6	0.6	3.7	ns
tPAFHZ ${ }^{(2)}$	WCLK to $\overline{\text { PAF }}$ Flag Bus to High-Impedance	0.6	3.6	0.6	3.7	ns
tFFHZ ${ }^{(2)}$	WCLK to Full Flag/Input Ready to High-Impedance	0.6	3.6	0.6	3.7	ns
tFFLZ ${ }^{(2)}$	WCLK to Full Flag/Input Ready to Low-Impedance	0.6	3.6	0.6	3.7	ns
tEFLZ ${ }^{(2)}$	RCLK to Empty Flag/Output Ready Flag to Low-Impedance	0.6	3.6	0.6	-3.7	ns
tEFHZ ${ }^{(2)}$	RCLK to Empty Flag/Output Ready Flag to High-Impedance	0.6	3.6	0.6	- 3.7	ns
tFSYMC	WCLK to $\overline{\text { PAF }}$ Bus Sync to Output	0.6	3.6	0.6	3.7	ns
tfxo	WCLK to $\overline{\text { PAF }}$ Bus Expansion to Output	0.6	3.6	0.6	3.7	ns
tESYMC	RCLK to $\overline{\text { PAE }}$ Bus Sync to Output	0.6	3.6	0.6	3.7	ns
texo	RCLK to $\overline{\text { PAE }}$ Bus Expansion to Output	0.6	3.6	0.6	3.7	ns
tPR	RCLK to Packet Ready Flag	0.6	3.6	0.6	3.7	ns
tSkEW1	SKEW time between RCLK and WCLK for $\overline{\mathrm{FF}} / \overline{\mathrm{R}}$ and $\overline{\mathrm{EF}} / \overline{\mathrm{OR}}$	5		6	-	ns
tSKEW2	SKEW time between RCLK and WCLK for $\overline{\text { PAF }}$ and $\overline{\text { PAE }}$	5	-	6	-	ns
tSKEW3	SKEW time between RCLK and WCLK for $\overline{\text { PAF }}[0: 7]$ and $\overline{\text { PAE }}[0: 7]$	5	T	6	-	ns
tSkEW4	SKEW time between RCLK and WCLK for $\overline{\mathrm{PR}}$ and $\overline{\mathrm{EF}} / \overline{\mathrm{OR}}$	5	-	6	-	ns
txis	Expansion InputSetup	1.5	-	2.0	-	ns
tXIH	Expansion InputHold	0.5	-	0.5	-	ns
tPPMS	Parallel ProgrammingSetup	15	-	15	-	ns
tPPMH	Parallel Programming Hold	5	-	5	-	ns

NOTES:

1. Industrial temperature range product for the 6 ns is available as a standard device. All other speed grades available by special order.
2. Values guaranteed by design, not currently tested.

FUNCTIONAL DESCRIPTION

MASTERRESET

A Master Reset is performed by toggling the $\overline{M R S}$ inputfrom HIGH to LOW to HIGH. During a master resetall internal multi-queue device setup and control registers are initialized and require programming either serially by the uservia the serial port, orvia parallel programming orby using the default settings. Refer to Figure 4, Device Programming Hierarchy for the programming hierarchy structure. During a master reset the state of the following inputs determinethe functionality of the part, these pins should be held HIGH or LOW.

PKT - Packet Mode
FM - Flag bus Mode
BM [3:0] - Bus Matching options
MAST - Master Device
ID0, 1, 2 - Device ID

DFM - Programming mode, serial or default
DF - Offset value for $\overline{\text { PAE }}$ and $\overline{\text { PAF }}$
Oncea master resethastaken place, the device mustbe programmedeither serially or via the default method before any read/write operations can begin.
See Figure 37, Master Resetfor relevant timing.

PROGRAMMING MODECAPTURED

On the rising of /MRS the programming mode signals (QSEL 0 \&1, DEFAULT) are captured. Once the programming mode signals are captured (latched), referto Table 1 fordetails. It will then require a number of clock cycles forthe device to completethe configuration. Configuration completionisindicated whenthe $\overline{\text { SENO }}$ signal transitionsfrom hightolow. The configuration completion indication is consistent with the previousMQdevice.

Figure 3. Reference Signals
TABLE 1 - DEVICE PROGRAMMING MODE COMPARISON

Programmable Parameter	Serial Programming	Parallel Programming	Default Programming
Number of Queues	Any number from 1 to 128	Any number from 1 to 128	64 or 128
Queue Depth	Each queue depth can be individualized	The total memory is evenly divided across the queues	The total memory is evenly divided across the queues
$\overline{\overline{P A E} / \overline{P A F}}$ Offset Value	Programmable to any value	Fixed value	Fixed value
Bus Matching	Any combination of x9 or $x 18$ or $x 36$ can be selected using the BM[3:0] bits.	Any combination of $x 9$ or x18 or x36 can be selected using the $\mathrm{BM}[3: 0]$ bits.	Any combination of $x 9, \times 18$, or $x 36$ can be selected using the BM[3:0] bits
I/O voltage	LVTTL, eHSTL, HSTL	LVTTL, eHSTL, HSTL	LVTTL, eHSTL, HSTL

TABLE 2-SETTING THE QUEUE PROGRAMMING MODE DURING MASTER RESET

$\overline{\text { MRS }}$	Default Mode (DFM)	QSEL 1	QSEL 0	Queue Programming Method
4	0	0	0	RESERVED
4	0	0	1	RESERVED
4	0	1	0	RESERVED
A	0	1	1	Serial programming mode
\uparrow	1	0	0	Enables the user to program the number of Queues using the Write Address bus
\uparrow	1	0	1	Enables the user to program the number of Queues using the Read Address bus
4	1	1	0	Selects 64 Queue
4	1	1	1	Selects 128 Queue

SERIAL PROGRAMMING

The multi-queueflow-control device is a fully programmable device, providing the user with flexibility in how queues are configured interms of the number of queues, depth of each queue and position of the $\overline{\mathrm{PAF}} / \overline{\mathrm{PAE}}$ flags within respectivequeues. Alluserprogramming isdoneviathe serial portafteramaster reset has taken place. Internally the multi-queue device has setup registers which mustbe serially loaded, these registers contain values for every queue within the device, such as the depth and $\overline{\mathrm{PAE}} / \overline{\mathrm{PAF}}$ offset values. The IDT72P51749/72P51759/72P51769 devices are capable of up to 128 queues and therefore contain 128 sets of registers for the setup of each queue.

DuringaMasterResetiftheDFM (DefaultMode)inputisLOW, thenthedevice will require serial programming by the user. It is recommended that the user utilize a 'C' program provided by IDT, this program will prompt the user for all information regarding the multi-queue setup. The program will then generate a serial bit stream which should be serially loaded into the device via the serial port. For the IDT72P51749/72P51759/72P51769 devices the serial programming requires a total number of serially loaded bits per device, (SCLK cycles withSENI enabled), calculated by: 19+(Qx72) whereQis the number of queues the user wishes to setup within the device.

Once the master reset is complete and $\overline{M R S}$ is HIGH, the device can be serially loaded. Data present on the SI (serial in), inputis loaded into the serial port on a rising edge of SCLK (serial clock), provided that $\overline{\text { SENI }}$ (serial in enable), is LOW. Once serial programming of the devicehas been successfully completed the device will indicatethis viathe $\overline{\mathrm{SENO}}$ (serial outputenable) going active, LOW. Upon detection of completion of programming, the user should cease all programming andtake $\overline{\mathrm{SEN}}$ inactive, HIGH . Note, $\overline{\mathrm{SENO}}$ follows $\overline{\mathrm{SENI}}$ once programming of a device is complete. Therefore, $\overline{\text { SENO }}$ will goLOW after programming provided $\overline{\mathrm{SENN}}$ is LOW, once $\overline{\mathrm{SENN}}$ is takenHIGH again, $\overline{\text { SENO }}$ will also go HIGH. The operation of the SO outputis similar, when programming of a given device is complete, the SO output will follow the SI input.

Ifdevices arebeing used inexpansion configurationthe serial ports of devices should becascaded. The usercanload all devices viathe serial inputportcontrol pins, SI \& $\overline{\text { SENII, of the first device in the chain. Again, the user may utilize the }}$ 'C' program to generate the serial bit stream, the program prompting the user for the number of devices to be programmed. The SENO and SO (serial out) of the first device should be connected to the $\overline{S E N I}$ and SI inputs of the second device respectively and so on, withthe $\overline{S E N O}$ \& SO outputs connecting to the $\overline{\text { SENI }} \&$ Sl inputs of all devices throughthe chain. All devices in the chain should beconnectedtoacommonSCLK. The serial outputportofthefinal device should be monitored by the user. When $\overline{\text { SENO }}$ of the final device goes LOW, this indicates that serial programming of all devices has been successfully completed. Upon detection of completion of programming, the usershould cease all programming and take $\overline{\text { SENI }}$ of the first device in the chain inactive, HIGH.

As mentioned, the first device inthe chain has its serial input port controlled by the user, this is the first device to have its internal registers serially loaded by the serial bitstream. When programming of this device is complete it will take its $\overline{\text { SENO }}$ output LOW and bypass the serial data loaded on the SI input to its SO output. The serial input of the second device in the chain is now loaded with the data from the SO of the first device, while the second device has its $\overline{\mathrm{SENI}}$ input LOW. This process continues through the chain until all devices are programmed and the $\overline{\text { SENO }}$ of the final device (or master device, ID = '000') goesLOW.

Once all serial programming has been successfully completed, normal operations, (queue selections on the read and write ports) may begin. When connected inexpansionconfiguration, the IDT72P51749/72P51759/72P51769 devices require atotal number of seriallyloaded bits perdevice to complete serial programming, (SCLK cycles with $\overline{S E N I}$ enabled), calculated by: $n[19+(Q x 72)]$ where Q is the number of queues the user wishes to setup within the device, where n is the number of devices in the chain.

See Figure 42, Serial PortConnectionand Figure 43, Serial Programming forconnection andtiming information.

DEFAULTPROGRAMMING

During a Master Reset if the DFM (Default Mode) input is HIGH the multiqueue device will be configured for default programming, (serial programming is not permitted). Default programming provides the user with a simpler, however limited means to setup the multi-queueflow-control device, ratherthan using the serial programming method. The default mode will configure a multiqueue device with the maximum number of queues setup, and the available memory allocated equally between the queues. The values of the $\overline{\mathrm{PAE}} / \overline{\mathrm{PAF}}$ offsets is determined by the state of the DF (default) pin during a master reset.

For the IDT72P51749/72P51759/72P51769 devices the default mode will setup 128 queues, each queue being $256 \times 36,512 \times 36$, and 1024×36 deep respectively. For each device, the value of the $\overline{\mathrm{PAE}} / \overline{\mathrm{PAF}}$ offsets is determined at master reset by the state of the $D F$ input. If $D F$ is $L O W$ then both the $\overline{P A E}$ \& $\overline{\mathrm{PAF}}$ offset will be 8 , if HIGH then the value is 128.
When configuring the IDT72P51749/72P51759/72P51769 devices in default mode the user simply has to apply WCLK cycles after a master reset, until SENO goesLOW,thissignalsthatdefaultprogrammingiscomplete. Theseclock cycles are required for the device to load its internal setup registers. When a single multi-queue device is used, the completion of device programming is signaled by the $\overline{\text { SENO }}$ output of a device going from HIGH to LOW. Note, that SENImustbeheld LOW when adevice is setup for defaultprogrammingmode.
When multi-queue devices are connected in expansion configuration, the $\overline{\mathrm{SENl}}$ ofthefirstdeviceinachain canbeheld LOW. The $\overline{\mathrm{SENO}}$ of adevice should connecttothe $\overline{\mathrm{SENI}}$ of the next device inthe chain. The $\overline{\mathrm{SENO}}$ of the final device is used to indicatethat defaultprogramming of all devices is complete. Whenthe master (ID='000') $\overline{\text { SENO goes LOW normal operations may begin. Again, all }}$ devices will be programmed with their maximum number of queues and the memory divided equally between them. Please refer to Figure 38, Default Programming.

PARALLELPROGRAMMING

During a Master Reset cycle (i.e. the $\overline{\mathrm{MRS}}$ signal transition s from HIGH to LOW then LOW to HIGH) ifthe DFM (Default Mode) input signal is HIGH and the QSEL 1 input signal is LOW the Multi-Queue Flow Control device is configured for Parallel Programming. Parallel Programming enables the number of queues within the device to be setthrough eitherthe Write Address (WRADD) bus or Read Address (RDADD) bus after the Master Reset cycle. Within Parallel Programming mode the Multi-Queue (MQ) device programmable parameters are; number of queues, queue depth, $\overline{\mathrm{PAE}} / \overline{\mathrm{PAF}}$ flag offset value, bus matching and the I/O voltage level. As previously indicated, the number of queues are configured using the write or read address bus, howeverbus matching is set during the Master Reset cycle. The value that is set during the Master Reset cycle is determined by the Bus Matching (BM) bits. For the IDT72P51749/72P51759/72P51769 devices in Parallel Programming Mode the value of the $\overline{\mathrm{PAE}} / \overline{\mathrm{PAF}}$ offsets at master resetis determined by the state of the DF input. If DF is LOW then both the $\overline{P A E} \& \overline{P A F}$ offset will be 8 , if HIGH then the value is 128 .
When configuring the IDT72P51749/72P51759/72P51769 devices in Parallel Programming Mode the user simply has to apply WCLK cycles after a master reset, untilSENO goes LOW, this signals that Parallel Programming is complete. These clock cycles are required for the device to load its internal setup registers. When a single multi-queue device is used, the completion of device programming is signaled by the $\overline{\text { SENO }}$ output of a device going from HIGH to LOW. Note, that SENI must be held LOW when a device is setup for Parallel Programming mode.

WhenMulti-Queue devices are connected in an Expansion Configuration, the $\overline{\mathrm{SENI}}$ signal of the firstdevice in achain mustbeheld LOW. The $\overline{\mathrm{SENO}}$ signal of adevice should connecttothe $\overline{\mathrm{SENI}}$ of the nextdevice in thechain. The $\overline{\mathrm{SENO}}$ of the final device is used to indicate that the programming of all devices is complete. When the master device (ID=' 000 ') $\overline{\text { SENO }}$ signal goes LOW the internal programming is complete and queue write/read operation may begin. Please refer to Figure 39, Parallel Programming for signal timing details.

PROGRAMMING HIERARCHY

Configuring the device is a 2 stage sequence. The first stage is to set the expansion device type, the desired programming mode and the device operating mode during the master reset cycle (i.e. on the rising edge of Master Reset $(\overline{\mathrm{MRS}})$). The second stage is to set values such as $\overline{\mathrm{PAE}} / \overline{\mathrm{PAF}}$, number of queues, queue depth, etc. using the programming mode (serial, parallel, default) selected in stage 1. Referto Figure 4, Device Programming Hierarchy.

Figure 4. Device Programming Hierarchy

QUEUE DESCRIPTION

CONFIGURATIONOF THEIDTMULTI-QUEUEFLOW-CONTROLDEVICE
The IDT72P51749/72P51759/72P51769 multi-queueflow-control devices canbeconfigured indistinctmodes, namely Packetmode, FIFOmode, Standard

mode, and FWFT mode. To configure the device operational mode set the configuration pins (PKT, $\overline{\mathrm{FWFT}}$) as indicated in Table 3, Mode Configuration.

TABLE 3 - MODE CONFIGURATION

Configuration Signals		Modes
PKT	FWFT	
LOW	LOW	FIFO mode - IDT Standard Mode
LOW	HIGH	FIFO mode - FWFT
HIGH	LOW	Packet mode - IDT Standard Mode
HIGH	HIGH	Packetmode - FWFT

In IDT Standard mode the read port signal $\overline{\mathrm{EF}} / \overline{\mathrm{OR}}$ is configured for empty flag($\overline{\mathrm{EF}})$ signaling. $\overline{\mathrm{EF}}$ is an active LOW signal. When $\overline{\mathrm{EF}}$ is LOW itsignifies the selected (present) queue is empty. Onthe write port, signal $\overline{F F} / \bar{R}$ is configured forfullflag($\overline{\mathrm{FF}}$) signaling. $\overline{\mathrm{FF}}$ is anactiveLOW signal. When $\overline{\mathrm{FF}}$ is LOW itsignifies the selected (present) queue is full. Refer to Figure 5, IDT Standard mode illustrated (Read Port).

$\overline{\mathrm{EF}}$

Qout

$\overline{R E N}$

Figure 5. IDT Standard mode illustrated (Read Port)

InFWFTmodethe read portsignal $\overline{\mathrm{EF}} / \overline{\mathrm{OR}}$ isconfiguredforoutput ready ($\overline{\mathrm{OR}})$ signaling. $\overline{\mathrm{OR}}$ is an active LOW signal. When $\overline{\mathrm{OR}}$ is HIGH, it signifies there is no available word to read. On the write port, signal $\overline{F F} / \bar{R}$ is configured for input ready $(\overline{\mathrm{R}})$ signaling. $\overline{\mathrm{R}}$ is an active LOW signal. When $\overline{\mathrm{R}}$ is LOW itsignifies the write port is ready for writing into the selected queue. Refer to Figure 6, FWFT mode illustrated (Read Port).

RCLK

$\overline{\mathrm{OR}}$

Qout
Data Bus
Previous word A word is available for reading
$\overline{R E N}$

Figure 6. First Word Fall Through (FWFT) mode illustrated (Read Port)

STANDARDMODEOPERATION

WRITE QUEUE SELECTION AND WRITE OPERATION (STANDARD MODE)

The IDT72P51749/72P51759/72P51769 multi-queueflow-control devices can be configured up to a maximum of 128 queues which data can be written via a common write port using the data inputs (Din), write clock (WCLK) and write enable ($\overline{\mathrm{WEN}})$. Thequeue to be written is selected by the address present on the write address bus (WRADD) during a rising edge on WCLK while write addressenable(WADEN) is HIGH. The state of $\overline{W E N}$ does notimpactthequeue selection. The queue selection requires 4 WCLK cycle. All subsequent data writes will be to this queue until another queue is selected.

Standard mode operation is defined as individual words will be written to the device as opposed to PacketMode where complete packets are written. The write port is designed such that 100% bus utilization can be obtained. This means that data can be written into the device on every WCLK rising edge including the cycle that a new queue is being addressed.

Changing queues requires 4 WCLK cycles on the write port (see Figure 44, Write Queue Select, Write Operation and Full flag Operation). WADEN goes high signaling a change of queue (clock cycle " A "). The address on WRADD atthat time determines the next queue. Data presented during that cycle("A") and the next cycle ("B" and "C"), will be written to the active (old) queue, provided $\overline{W E N}$ is LOW. If $\overline{W E N}$ is HIGH (inactive) for these 3clock cycles, data will not be written in a queue. The write port discrete full flag will update to show the full status ofthenewly selectedqueue $\left(Q_{x}\right)$ atthis lastcycle's rising edge ("C"). Data present on the datainputbus (Din), can be written into the newly selected queue $\left(Q_{x}\right)$ on the rising edge of WCLK on the third cycle ("D") following a change of queue, provided $\overline{W E N}$ is LOW and the new queue is not full. If the newly selected queue is full atthe point of its selection, any writes to that queue will be prevented. Data cannot be written into a full queue.

Refer to Figure 44, Write Queue Select, Write Operation and Full flag Operation, Figure 46, Write Operations in First Word Fall Throughfor timing diagrams and Figure 47, Full Flag Timing in Expansion Configurationfortiming diagrams.

TABLE 4 - WRITE ADDRESS BUS, WRADD[7:0]

Operation	WCLK	WADEN	FSTR	WRADD[7:0]		
Write Queue Select	4	1	0	$\begin{array}{ll:l:llll}7 & 6 & 5 & 4 & 3 & 2 & 1\end{array} 0$ Device S'lect1' Write Queue Address (Compared tol (6 bits $=64$ QueuesIDO $, 1,2)$ 7 bits $=128$ Queues)		
$\overline{\text { PAFn }}$ Quadrant Select	\checkmark	0	1	$\left\|\begin{array}{ccc} 7 & 6 & 5 \\ \text { Device Select } \\ \text { (Compared to } \\ \text { ID0, } 1,2) \end{array}\right\|$		3210 Status Word Address
		Status Word Address		Queue Status on $\overline{\text { PAF }}$ Bus		
		0000		Q0 : Q7 \rightarrow Р $\overline{\text { AF }} 0: \overline{\text { PAF7 }}$		
		0001		Q8: Q15 \rightarrow Р $\overline{\text { PAF0 }}: \overline{\text { PAF7 }}$		
		0010		Q16: Q23 \rightarrow PAF0 : $\overline{\text { PAF7 }}$		
		0011		Q24: Q31 \rightarrow Р $\overline{\text { PAF0 }}: \overline{\text { PAF7 }}$		
		0100		Q32 : Q39 \rightarrow PAF0 : $\overline{\text { PAF7 }}$		
		0101		Q40 : Q47 $\rightarrow \overline{\text { PAF0 }}$: $\overline{\text { PAF7 }}$		
		0110				
		0111		Q48: Q55 \rightarrow 产AF0 $: \overline{\text { PAF7 }}$Q56: $63 \rightarrow \overline{\text { PAF0 }}: \overline{\text { PAF7 }}$		
		1000		Q56: Q63 \rightarrow PAF0 : PAF7 Q64 : Q71 $\rightarrow \overline{\text { PAF0 }}: \overline{\text { PAF7 }}$		
		1001		Q72 : Q79 $\rightarrow \overline{\text { PAF0 }}: \overline{\text { PAF7 }}$		
		1010		$\text { Q80 : Q87 } \rightarrow \overline{\text { PAF0 }}: \overline{\text { PAF7 }}$		
		1011		$\begin{aligned} & \text { Q80 : Q87 } \rightarrow \overline{\text { PAF0 }}: \overline{\mathrm{PAF}} 7 \\ & \text { Q88 : Q95 } \rightarrow \overline{\mathrm{PAF0}}: \overline{\mathrm{PAF}} 7 \end{aligned}$		
		1100		$\begin{aligned} & \text { Q88 : Q95 } \rightarrow \overline{\text { PAF0 }: \overline{\text { PAF7 }}} \\ & \text { Q96 : Q103 } \rightarrow \overline{\text { PAF0 }: \overline{\text { PAF7 }}} \end{aligned}$		
		1101		Q96 : Q103 \rightarrow PAF0 : $\overline{\text { PAF7 }}$ Q104: Q111 $\rightarrow \overline{\text { PAF0 }: \overline{P A F 7 ~}}$		
		1110		Q112: Q119 $\rightarrow \overline{\text { PAF0 }: ~ \overline{P A F 7 ~}}$		
		1111		Q120 : Q127 \rightarrow PAF0 : $\overline{\text { PAF7 }}$		

READ QUEUE SELECTION AND READ OPERATION (STANDARD MODE)

The IDT72P51749/72P51759/72P51769 multi-queueflow-control devices can be configured up to a maximum of 128 queues which data can be read via a common read portusing the data outputs (Qout), read clock (RCLK) and read enable ($\overline{\mathrm{REN}})$. An outputenable, $\overline{\mathrm{OE}}$ control pin is also provided to allow HighImpedance selection ofthe Qoutdata outputs. Themulti-queue device read port operates in standard IDT mode and "First Word Fall Through" mode (see Figure 46, Write Operations in First Word Fall Through). Thequeue to be read is selected by the address presented onthe read address bus (RDADD) during a rising edge on RCLKwhile read address enable (RADEN) is HIGH. The state of $\overline{R E N}$ does not impact the queue selection. The queue selection requires 1 RCLK cycles. All subsequent data reads will be from this queue until another queue is selected.

Standard mode operation is defined as individual words will be read fromthe device. The read port is designed such that 100% bus utilization can be obtained. This means that data can be read out of the device on every RCLK rising edge including the cycle that a new queue is being addressed.

Changing queues requires a minimum offour RCLK cycles on the read port (see Figure 48, Read Queue Select, Read Operation). RADEN goes high signaling a change of queue (clock cycle "D"). The address on RDADD atthat time determines the next queue. Data presented during that cycle("D") will be readat "D" $\left(+t_{A}\right)$, andthenextcycle ("E"), can continueto be readfrom the active (old) queue $\left(Q_{p}\right)$, provided $\overline{R E N}$ is active LOW. If $\overline{R E N}$ is HIGH (inactive) for these two clock cycles, data will not be read from the previous queue. The next cycle's rising edge ("F"), the read port discrete empty flag will update to show the empty status of the newly selected queue $\left(Q_{F}\right)$. The internal pipeline is also loaded at this time ("F") with the last word from the previous (old) queue $\left(Q_{F}\right)$

TABLE 5 - READ ADDRESS BUS, RDADD[7:0]

Operation	RCLK	RADEN	ESTR	RDADD[7:0]						
Read Queue Select	$\boxed{-}$	1	0	7	6	5	4	3	2	1

Status Word Address	Queue Status on $\overline{\text { PAE }} / \overline{\text { PR }}$ Bus
0000	Q0 : Q7 \rightarrow ¢ $\overline{\text { AF }} 0: \overline{\text { PAF7 }}$
0001	Q8: Q15 \rightarrow PAF0 : $\overline{\text { PAF7 }}$
0010	Q16 : Q23 \rightarrow Р $\overline{\text { AF0 }}$: $\overline{\text { PAF7 }}$
0011	Q24 : Q31 \rightarrow Р $\overline{\text { AF0 }}: \overline{\text { PAF7 }}$
0100	Q32 : Q39 \rightarrow Р $\overline{\text { AF0 }}: \overline{\text { PAF7 }}$
0101	Q40 : Q47 \rightarrow Р $\overline{\text { AF0 }}: \overline{\text { PAF7 }}$
0110	Q48 : Q55 \rightarrow ¢ $\overline{\text { AF0 }}: \overline{\text { PAF7 }}$
0111	Q56 : Q63 \rightarrow Р $\overline{\text { PAF0 }}: \overline{\text { PAF7 }}$
1000	Q64 : Q71 \rightarrow Р $\overline{\text { AF0 }}: \overline{\text { PAF7 }}$
1001	Q72 : Q79 \rightarrow Р $\overline{\text { AF0 }}: \overline{\text { PAF7 }}$
1010	Q80 : Q87 \rightarrow ¢ $\overline{\text { AF0 }}: \overline{\text { PAF7 }}$
1011	Q88 : Q95 \rightarrow Р $\overline{\text { AF0 }}: \overline{\text { PAF7 }}$
1100	Q96: Q103 \rightarrow Р $\overline{\text { AFF }}$: $\overline{\text { PAF7 }}$
1101	Q104: Q111 \rightarrow Р $\overline{\text { AF0 }}: \overline{\text { PAF7 }}$
1110	Q112 : Q119 \rightarrow PAF0 : $\overline{\text { PAF7 }}$
1111	Q120 : Q127 \rightarrow Р $\overline{\text { AF0 }}: \overline{\text { PAF7 }}$

6714 drw12
as well as the next word from the new queue $\left(Q_{F}\right)$. Both of these words will fall through to the output register (provided the $\overline{\mathrm{OE}}$ is asserted) consecutively (cycles " F " and " G " respectively) following the selection of the new queue regardless of the state of $\overline{R E N}$, unless the new queue $\left(Q_{F}\right)$ is empty. If the newly selected queue is empty, any reads from that queue will be prevented. Data cannot be read from an empty queue. Remember that $\overline{\mathrm{OE}}$ allows the user to placethe data outputbus (Qout) into High-Impedance and the data canbe read in to the output register regardless of $\overline{\mathrm{OE}}$.

Referto Table 5, for Read Address Bus arrangement. Also, referto Figures 13, 15, and 16 for readqueue selection and read portoperationtiming diagrams.

PACKETMODEOPERATION

The Packet mode operation provides the capability where, user defined packets or frames can be written to the device as opposed to Standard mode where individual words are written. Forclarification, in PacketMode, a packet canbe writtentothe device withthestartinglocationdesignatedas TransmitStart ofPacket(TSOP) and theendinglocationdesignatedas TransmitEnd of Packet (TEOP). In conjunction, a packet read from the device will be designated as Receive Start of Packet (RSOP) and a Receive End of Packet (REOP). The minimum size for apacketisfour words(SOP, two words of data andEOP). The 4 words must be the largest word that is configured. For example in a $\times 18$ to x9 bus matching configurationthe fourwordsmustbex18bitwords. Thealmost empty flag bus becomes the "Packet Ready" $\overline{\text { PR }}$ flag bus when the device is configured for packetmode. Valid packets are indicated when both $\overline{\mathrm{PR}}$ and $\overline{\mathrm{OR}}$ are asserted.

WRITEQUEUESELECTION ANDWRITE OPERATION(PACKETMODE)

Changing queues requires 4WCLK cycles on the write port(see Figure54, Writing inPacketModeduring aQueue Change).WADEN goes high signaling a change of queue (clock cycle "B" or" "l"). The address on WRADD atthe rising edge of WCLK determines the next queue. Data presented on Din during that cycle ("B" or "l") and the next cycle ("C" or "J") can continue to be written to the active (old) queue (Q_{A} or Q_{B} respectively), provided $\overline{W E N}$ is LOW (active). If $\overline{W E N}$ is HIGH (inactive) for these two clock cycles (H), data will not be written intothe previous queue $\left(Q_{A}\right)$. The write port discrete fullf flag will update to show the full status of the newly selected queue $\left(Q_{B}\right)$ atthis last cycle's rising edge ("D" or "K"). Data values presented on the data inputbus (Din), can be written into the newly selected queue $\left(Q_{x}\right)$ on the rising edge of WCLK on the third cycle ("E") following a requestforchange of queue, provided WEN is LOW (active)
and the new queue is notfull. Ifa selected queue isfull ($\overline{F F}$ is LOW), then writes to that queue will be prevented. Note, data cannot be written into a full queue.

Referto Figure 54, Writing inPacketModeduring a QueueChangefortiming diagrams.

READ QUEUE SELECTION AND READ OPERATION (PACKET MODE)

Changing queues requires 4 RCLK cycles on the read port (see Figure 55, Reading in Packet Mode during a Queue Change). RADEN goes high signaling a change of queue (clock cycle "B" or "l"). The address on RDADD at the rising edge of RCLK determines the queue. As illustrated in Figure 55 during cycle ("B" or "l"), and the next cycle ("C" or "J") data can continue to be read from the active (old) queue (Q_{A} or Q_{B} respectively), provided both $\overline{R E N}$ and $\overline{O E}$ areLOW (active) simultaneously with changing queues. In applications where the multi-queue flow-control device is connected to a shared bus, an outputenable, $\overline{\mathrm{OE}}$ control pinis also providedtoallowHigh-Impedance selection of the data outputs (Qout).
Refer to Figure 55, Reading in Packet Mode during a Queue Change as well as Figure 38, 39, 40, 41, and 42 fortiming diagrams and Table 5, for Read Address bus arrangement.
Note, the almostempty flag bus becomesthe "Packet Ready"flagbuswhen the device is configured for packet ready mode.

EXPANDING UP TO 256 QUEUES OR PROVIDING DEEPER QUEUES

Expansioncantakeplace only inIDTStandardmode. Inthe 128 queue multiqueue device, the WRADD address bus is 8 bits wide. The 7 Least Significant bits (LSbs) are usedto address one of the 128 available queues within a single multi-queue device. The Most Significant bit (MSbs) is used when a device is connected in expansion configuration with up to 2 devices connected in width expansion, each device having its own bit address. When logically expanded with multiple parts, each device is statically setup with a unique chip ID code on the ID pins, ID0, ID1, and ID2. A device is selected when the Most Significant bit of the WRADD address bus matches the ID code. The maximum logical expansion is 256 queues (128 queues $\times 2$ devices).
Note:TheWRADD bus is also used inconjunction with FSTR (almostfullflag bus strobe), to address the almostfull flag bus during direct mode of operation.
Refer to Table 4, for Write Address bus arrangement. Also, refer to Figure 47, Full Flag Timing Expansion Configuration, Figure 51, Output Ready Flag Timing (In Expansion Configuration), and Figure 67, Expansion using ID codes, fortiming diagrams.

SWITCHING QUEUES ON THE WRITE PORT

The IDT 72P51749/72P51759/72P51769 multi-queueflow-control devices canbe configured upto a maximum of 128 queues. Datais written into a queue using the Data Input (Din) bus, Write Clock (WCLK) and Write Enable (WEN) signals. Selecting a queue occurs by placing the queue address on the Write

Address bus (WRADD) during a rising edge of WCLK while Write Address Enable (WADEN) is HIGH. For reference, the state of Write Enable ($\overline{\mathrm{WEN}})$ is a"Don'tCare" during aqueue selection. WEN hassignificanceduring thequeue mark operation. Selecting a queue requires 4 WCLK cycles. Refer to Figure 7, Write Port Switching Queues Signal Sequence.

Figure 7. Write Port Switching Queues Signal Sequence

The IDT 72P51749/72P51759/72P51769 multi-queueflow-control device supports changing (switching) queues every four (4) clock cycles. To switch from the Present Queue (PQ) to another queue requires a queue address to be placed on the Write Address Bus (WRADD) bus and a rising edge of Write Clock (WCLK) and Write Address Enable (WADEN) is HIGH. There are no restrictions as to the order to which queues are selected or switched into or out of.

Formaximum efficiency, during the 4 clock cycles required to switch queues the IDT72P51749/72P51759/72P51769 multi-queueflow-control device can continue to write intothe Present Queue (PQ). The Present Queue is defined as the current selected queue. Refer to Figure 8, Switching Queues Bus Efficiency.

NOTES:

1. $P Q=$ Present Queue
$N Q=$ Next Queue

* Requires 4 clock cycles to switch queues.

Figure 8. Switching Queues Bus Efficiency

The IDT72P51749/72P51759/72P51769 multi-queue flow-control device supports writing and reading from either the same queue of from different queues. The device also supports simultaneous queue switching onthe write
and read ports. The simultaneous queue switching may occur with either the WriteClock and ReadClock synchronous or asynchronousto each other. For reference refer to Figure 9, Simultaneous Queue Switching.

6714 drw15
Figure 9. Simultaneous Queue Switching

The multi-queueflow-control device requires 4 clock cycles to switch queues onthe write port. Referto Table6, Write QueueSwitch Operationfor a detailed description of each queue switch clock cycle.

TABLE 6 - WRITE QUEUE SWITCH OPERATION

Queue Switch Cycle	IDT Mode	FWFT Mode
QS-1	Queue Switch Initiated, Rewrite/No Rewrite selection	Queue Switch Initiated, Rewrite/No Rewrite selection
QSO	Queue MARK / Un-MARK	Queue MARK / Un-MARK
QS1	-	-
QS2	- $\overline{\mathrm{PAF}}$ signal updated for Next Queue (NQ) - Packet Ready ($\overline{\mathrm{PR}})$ signal updated 	- $\overline{\text { PAF }}$ signal updated for Next Queue (NQ) - Packet Ready ($\overline{\mathrm{PR}})$ signal updated - $\overline{\mathrm{R}}$ flag updated for NQ
QS3	Start of Write Data Operation	Start of Write Data Operation

SWITCHING QUEUES ON THE READ PORT

The IDT72P51749/72P51759/72P51769 multi-queueflow-control devices canbe configured up to a maximum of 128 queues. Data is read from a queue using the DataOutput(Qout)bus, ReadClock (RCLK) andRead Enable (REN) signals. Selecting aqueue on the read portoccurs by placing the queue address on the Read Address bus (RDADD) during a rising edge of RCLK while Read

Address Enable (RADEN) is HIGH. For reference, the state of Read Enable (REN) is a "Don't Care" during a read port queue selection. REN has significance during the queue mark operation. Selecting a queue requires 4 WCLK cycles. Refer to Figure 10, Read Port Switching Queues Signal Sequence.

Figure 10. Read Port Switching Queues Signal Sequence

The IDT 72P51749/72P51759/72P51769 multi-queueflow-control device supports changing (switching) queues every four (4) clock cycles. To switch from the Present Queue (PQ) to another queue requires a queue address to be placed on the Read Address Bus (RDADD) bus and a rising edge of Read Clock (RCLK) and Read Address Enable (RADEN) is HIGH. There are no restrictions as to the order to which queues are selected or switched into o out of.
Qout

| $X Q Q$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

NOTE:

$P Q=$ Present Queue
$N Q=$ Next Queue
Figure 11. Switching Queues Bus Efficiency

SIMULTANEOUS QUEUE SWITCHING

The IDT72P51749/72P51759/72P51769 multi-queue flow-control device supports reading and writing from either the same queue of from different queues. The device also supports simultaneous queue switching on the read
and write ports. The simultaneous queue switching may occur with eitherthe ReadClock andWrite Clock synchronous or asynchronous to eachother. For reference refer to Figure 12, Simultaneous Queue Switching.

Figure 12. Simultaneous Queue Switching

The multi-queueflow-control device requires 4 clock cycles to switch queues onthe read port, referto Table7, Read QueueSwitch Operation for a detailed description of each queue switch clock cycles.

TABLE 7 - READ QUEUE SWITCH OPERATION

Queue Switch Cycle	IDT Mode	FWFT Mode
QS-1	Queue Switch Initiated, Re-read/No Re-read selection	Queue Switch Initiated, Re-read/No Re-read selection
QSO	Queue MARK / Un-MARK	Queue MARK / Un-MARK
QS1	-	-
QS2	- $\overline{\text { PAE }}$ signal updated for Next Queue (NQ) - Packet Ready ($\overline{\mathrm{PR}})$ signal updated - Empty Flag ($\overline{\mathrm{EF}}$) updated for NQ	- $\overline{\text { PAE signal updated for Next Queue (NQ) }}$ - Packet Ready ($\overline{\mathrm{PR}}$) signal updated
QS3	Start of Read Data Operation	- Start of Read Data Operation - $\overline{\mathrm{OR}}$ updated for NQ

TABLE 8 - SAME QUEUE SWITCH

PQ	NQ	Supported	Comment
NotMarked	NotMarked	Yes	Queue Switchis ignored
NotMarked	Marked	Yes	Add Mark to current queue
Marked	Not Marked, No Reread	NotAllowed	
Marked	Not Marked, Reread	Yes	Remove Mark
Marked	Marked, No Reread	NotAllowed	
Marked	Marked, Reread	Yes	Keepend: Mark

QUEUE MARKing

The overall intent of the MARK function is to provide the ability to either rewrite and/or re-read information that is stored into a queue.
Aqueue can be MARKed by either the write portorthe read port. The MARK operation is portindependent. The samequeue canbe markedby the write port and the read port simultaneously. Only the active queue can be MARKed, multiple queues canNOTbe MARKed by a port. A port(write or read) may only designateonequeue MARKedatatime. Uponaqueue switch adecision must bemade asto whetherto returntotheMarkedlocationorthelastaccessaddress.

MARK AND REWRITE/ MARK AND REREAD

TheMARK functionality operates in any mode combination (Packetmode, IDT Standard Mode, FIFOMode, FWFTMode), FWFT). Queues ontheWrite Port are MARKed using the WCLK \& WADEN signals. Queues on the Read PortareMARKed using the RCLK and RADENsignals. Refer to the following timing diagrams for additional queue MARK details. Referto Figure 13through 18forfurtherinformation.

6714 drw29

- @QS-1, if $\overline{W E N}=0$ and $W A D E N=1, P Q$ will be updated in $Q S 0,1$, and 2 , and $N Q$ data will be written in $Q S 3$.
- @QS-1, ifWEN_N=1 and WADEN=1, there is no update for PQ during QS0-QS2. Next time PQ is switched back, data will be written into last update location (rewrite).
- @ QSO, WADEN status is used to determine if a "mark" is requested for NQ. If WADEN=1 in QSO, NQ will be marked. In FIFO mode, the first NQ position after QS is marked (latch WFCR values before QS3), data can't be read out beyond this location. In packet mode, every SOP position is marked till next SOP comes, then the mark moves to new position.
- @QSO, ifWADEN=0, NQ is not marked.

Figure 13. MARK and Re-Write Sequence

- @QS-1 (A), if $\overline{R E N}=0$ and RADEN=1, (request for a Queue Switch occurs RADEN=1 and simultaneously reading from a queue) the Queue Address Register will be updated in QS2, and the data from the Next Queue (NQ) will be available in QS3.
- @QS-1, if $\overline{R E N}=1$ and RADEN=1, (request for a Queue Switch occurs RADEN $=1$) the Queue Address Register will be updated in QS2. The Present Queue address pointer will not increment during QS0-QS2. The Next time PQ is selected, the data will be from the last addressed location.
- @QSO, RADEN status is used to determine if a "mark" is requested forNQ. If RADEN=1 in QSO, NQ will be mark. In FIFO mode, first NQ position after QS is marked (latch RFCR values before QS3), data can't overwrite this location. In packet mode, every SOP position is marked till next SOP comes, then the markmoves to new position.

Figure 14. MARK and Re-Read Sequence

Figure 15. MARKing a Queue in Packet Mode - Write Queue MARK

Read Queue MARK

RADEN		ACTION
A	B	
1	1	Selects a Queue \& MARK the Queue
1	0	Selects a Queue

Figure 17. UN-MARKing a Queue in Packet Mode - Write Queue UN-MARK

RADEN		ACTION
A	B	
1	1	Selects a Queue and MARK the Queue
1	0	Selects a Queue \& Remove MARK

6714 drw34

Figure 18. UN-MARKing a Queue in Packet Mode - Read Queue UN-MARK

MARK OPERATIONAL NOTES:
 IN PACKET MODE

Write Port

- MARKing a location can only occur during a Queue switch cycle
- There is only one MARKed location within a Queue
- Only 1 packet can be MARKed at a time within a Queue.
- In packetmode, for a full packetre-write the MARK mustoccuratthe SOP location of the packet.
- In packet mode data can be re-written from the MARK
- In packetmode the MARK moves from packetto packetwithin a queue when the next packetis written.
- The sequence to move the MARK to the next packet is, first an EOP must occur, then a valid write occurs.

MARK Move Sequence

Read Port

- MARKing can only occur during a Queue switch cycle
- Only 1 packet can be MARKed at a time within a Queue.
- In packet mode,MARK is moved to a location of the packet.
- In packet mode the MARK can be moved from SOP (start of packet) to SOP (start of packet) within the queue by a valid read.

WADEN		ACTION
A	B	
1	1	Selects the Queue and MARK the Queue
1	0	Selects a Queue

6714 drw36
Figure 19. MARKing a Queue in FIFO Mode - Write Queue MARK

6714 drw37

Figure 20. MARKing a Queue in FIFO Mode - Read Queue MARK

MARK Operational Notes:

In FIFO Mode

Write Port

- MARKing can only occur during a Queue switch cycle
- The entire Queue is MARKed at a time.
- InIDT Standard/FWFT mode,MARK is used to mark the firstlocation of the Queue.
- InIDTStandard/FWFTmodetheMARKcanNOTbemoved withinthe queue.

Read Port

- MARKing can only occur during a Queue switch cycle
- Only the firstlocation ofthe Queue canbeMARKedinStandard/FWFT mode.
- InIDTStandardmodetheMARKcanNOTbemovedlocationtolocation within the queue.

Un-MARKing a Queue

UN-MARKing a Queue in FIFO Mode

Figure 21. UN-MARKing a Queue in FIFO Mode - Write Queue UN-MARK

6714 drw39
Figure 22. UN-MARKing a Queue in FIFO Mode - Read Queue UN-MARK

UN-MARK Operational Notes:

In FIFO Mode

WritePort

- Un-MARKing can only occur during a Queue switch cycle.
- InFIFOMode,UN-MARKinga Queue can be accomplished by either switching to the same queue or switching to another queue.
- Note only 1 queue can be marked at any given time.
- In Standard/FIFO mode the MARK can NOT be moved location to location withinthe queue.

Read Port

- Un-MARKing can only occur during a Queue switch cycle.
- InStandard/FIFO mode,UN-MARKingaQueue canbeaccomplished by eitherswitching to the same queue or switching to another queue.
- Note only 1 queue can be marked at any given time.
- In Standard/FIFO mode the MARK can NOT be moved location to location withinthequeue.

Leaving a MARK Active

During a Queue switch the value of $\overline{W E N}$ for the write port and $\overline{R E N}$ for the read port determines whether the MARK remains active or is de-activated.

Leaving a MARK active on the Write Port

Figure 23. Leaving a MARK active on the Write Port

Leaving a MARK active on the Read Port

Figure 24. Leaving a MARK active on the Read Port

Inactivating a MARK

During a Queue switch the value of $\overline{W E N}$ for the write port and $\overline{R E N}$ for the read port determines whether the MARK remains active or is de-activated.

Inactivating a MARK on the Write Port

Figure 25. Inactivating a MARK on the Write Port Active

Inactivating a MARK on the Read Port

Figure 26. Inactivating a MARK on the Read Port Active

Write Cycle

| Action | $\overline{\text { WEN }}$
 (active low) | $\overline{\text { WADEN }}$
 (active low) | $\overline{\text { WEN }}$
 (active low) | $\overline{\text { WADEN }}$
 (active low) |
| :--- | :---: | :---: | :---: | :---: | :---: |
| NO
 Operation | 0 | 0 | 0 | 0 |
| Selects a
 Queue | 0 | 1 | 0 | 1 |
| NO
 Operation | 1 | 0 | 1 | 0 |
| NO
 Operation | 1 | 1 | 1 | 1 |

Read Cycle

Action	$\overline{\text { REN }}$ (active low)	$\overline{\text { RADEN }}$ (active low)	$\overline{\text { REN }}$ (active low)	$\overline{\text { RADEN }}$ (active low)
NO Operation	0	0	0	0
Selects a Queue	0	1	0	1
NO Operation	1	0	1	0
NO Operation	1	1	1	1

FLAG DESCRIPTION

PAFn FLAG BUS OPERATION

The IDT72P51749/72P51759/72P51769 multi-queue flow-control device can be configured for upto 128 queues, each queue having its own almostfull status. An activequeue has itsflagstatus outputtothe discreteflags, $\overline{\mathrm{FF}}$ and $\overline{\mathrm{PAF}}$, on the write port. Queues that are not selected for a write operation can have their $\overline{\text { PAF }}$ status monitoredviathe $\overline{\text { PAFn }}$ bus. The $\overline{\text { AFF }}$ nflag bus is 8 bits wide, so that 8 queues at atime can have their status output to the bus. If 9 or more queues are setup within adevice then there are 2 methods by whichthe device can share the bus between queues, "Direct" mode and "Polled" mode depending on the state of the FM (Flag Mode) input during a Master Reset. If 8orless queues are setup within adevice then each will have its own dedicated output from the bus. If 8 or less queues are setup in single device mode, it is recommended to contigure the $\overline{\text { PAFn }}$ bus to polled mode asitdoes not require using the write address (WRADD).

FULL FLAG OPERATION

The multi-queueflow-control device provides a single Full Flag output, $\overline{F F}$. The FF flag outputprovides afull status of the queue currently selected on the write port for write operations. Internally the multi-queue flow-control device monitors and maintains astatus ofthefull condition of allqueues withinit, however only thequeue thatis selectedfor write operations has its full status outputto the FF flag. This dedicated flag is often referred to as the "active queue full flag".

When queue switches are being made on the write port, the FF flag output will switch to the new queue and provide the user with the new queue status, on the 3rd cycle after a new queue selection is made. The user then has afull status for the new queue one cycle ahead of the WCLK rising edge that data can be written into the new queue. That is, a new queue can be selected on the write portviathe WRADD bus, WADEN enable anda rising edge of WCLK. Onthe 4th rising edge of WCLK, the FF flag outputwill show the full status of the newly selected queue. On the forth rising edge of WCLK following the queue selection, data can be written into the newly selected queue provided thatdata and enable setup \& hold times are met.

Note, the FF flag will provide status of anewly selected queue three WCLK cycle afterqueue selection, which is one cycle before data can be writtentothat queue. This prevents the userfrom writing datatoaqueue thatisfull, (assuming that a queue switch has been made to a queue that is actually full).

The FF flagis synchronoustothe WCLK andall transitions of the FFflagoccur based on arising edge of WCLK. Internally the multi-queue device monitors and keeps a record of the full status for all queues. It is possible that the status of a FFflagmaybe changing internally eventhough thatflagis not the active queue flag (selected on the write port). A queue selected on the read port may experience a change of its internal full llag status based on read operations.

See Figure 44, Write Queue Select, Write Operation and Full Flag Operationand Figure 47, Full Flag Timing in ExpansionConfigurationfortiming information.

EXPANSION CONFIGURATION - FULL FLAG OPERATION

When multi-queuedevices are connected in Expansion configuration the $\overline{F F}$ flags of all devices should be connected together, such that a system controller monitoring and managing the multi-queue devices write port only looks at a single FF flag (as opposed to a discrete FF flag for each device). This FF flag is only pertinento the queue being selected for write operations at that time. Remember, thatwhen inexpansion configuration only one multi-queue device can be written to atany momentin time, thus the $\overline{F F}$ flag provides status of the active queue on the write port.

This connection offlag outputsto create a single flag requires thatthe $\overline{F F}$ flag outputhave a High-Impedance capability, such that when aqueue selection is
made only a single device drives the $\overline{F F}$ flag bus and all other $\overline{\mathrm{FF}}$ flag outputs connected to the FF flag bus are placed into High-Impedance. The user does nothave to select this High-Impedance state, a given multi-queueflow-control device will automatically place its $\overline{F F}$ flag outputinto High-Impedance when none of its queues are selected for write operations.
Whenqueues within a single device are selectedforwrite operations, the $\overline{F F}$ flag output of thatdevice will maintain control of the $\overline{\text { FF flag bus. Its FF flag will }}$ simply update betweenqueue switchestoshow the respective queuefull status.
The multi-queue device places its $\overline{F F}$ flagoutputinto High-Impedancebased on the 1-3bit ID code (1 iftwo multi-queue are configured with amaximum total of 256 queues, 2 iffour devices are used totalling a maximum of 256 queues, and 3 ifthere are up to eightdevices with a maximum total of 256 queues) found in the 1-3 mostsignificantbits of the write queue address bus, WRADD. If the 1-3 mostsignificantbits of WRADD match the 1-3bitID code setup on the static inputs, IDO, ID1 and ID2then the FF Flag output of the respective device will be in aLow-Impedance state. If they do not match, then the $\overline{F F}$ flag output of the respective device will be in a High-Impedance state. See Figure 47, Full Flag Timing in Expansion Configurationfor details offlag operation, including when more than one device is connected in expansion.

EMPTY OR OUTPUT READY FLAG OPERATION($\overline{E F} / \overline{O R}$)

The multi-queue flow-control device provides a single Empty or Output Ready flag output, $\overline{\mathrm{EF}} / \overline{\mathrm{OR}}$. The $\overline{\mathrm{OR}}$ provides an empty status or data Output Ready status for the data word currently available on the output register of the read port. The rising edge of an RCLK cyclethatplaces new dataontothe output register of the read port, also updates the $\overline{\text { OR }}$ flag to show whether or not that new data word is actually valid. Internally the multi-queue flow-control device monitors and maintains a status of the empty condition of all queues withinit, howeveronly the queue thatisselectedforread operations hasits Output Ready (empty) status outputtothe $\overline{\mathrm{R}} \mathrm{Flag}$, giving avalid status forthe word being read athattime.
The nature of the firstword fall through operation means that when the last data word is read from a selected queue, the $\overline{\mathrm{OR}}$ flag will go H GH on the next enabled read, that is, on the next rising edge of RCLK while REN is LOW.
Whenqueue switches are being made on the read port, the $\overline{\mathrm{OR}}$ flag will switch to show status of the new queue in line withthe data outputfrom the new queue. When a queue selection is made the first data from that queue will appearon the Qoutdataoutputs 4 RCLK cycles later, the $\overline{\mathrm{OR}}$ will change state to indicate validity of the data from the newly selected queue on this $3^{\text {rd }}$ RCLK cycle also. The previous cycles will continue to output datafrom the previous queue and the $\overline{\mathrm{OR}}$ flag will indicate the status of those outputs. Again, the $\overline{\mathrm{OR}}$ flag always indicates status for the data currently present on the outputregister.
The $\overline{\mathrm{R}}$ flagis synchronous tothe RCLK andall transitions of the $\overline{\mathrm{OR}}$ flagoccur based on arisingedge of RCLK. Internally the multi-queuedevice monitors and keeps a record of the Output Ready (empty) status for all queues. Itis possible that the status of an $\overline{\mathrm{OR}}$ flag may be changing internally even though that respective flagis nothe active queueflag (selected on the read port). Aqueue selected on the write portmay experienceachange of its internal $\overline{\mathrm{OR}}$ flag status based on write operations, thatis, data may be written into that queue causing itto become "notempty".
See Figure 48, Read Queue Select, Read Operationand Figure 51, Output Ready Flag Timingfor details of the timing.

EXPANSION-EMPTY FLAG OPERATION

When multi-queuedevices are connected in Expansion configuration, the $\overline{E F}$ flags of all devices should be connectedtogether, such thata system controller monitoring and managing the multi-queue devices read port only looks at a single EF flag (as opposed to a discrete EF flag for each device). This EF flag
is only pertinent to the queue being selected for read operations at that time. Remember, that when in expansionconfiguration only one multi-queue device canbe read from at any moment intime, thus the $\overline{\mathrm{EF}}$ flag provides status of the active queue on the read port.

This connection offlagoutputs to create a single flag requires that the $\overline{\mathrm{EF}}$ flag outputhave aHigh-Impedance capability, suchthat when a queue selection is made only a single device drives the $\overline{E F}$ flag bus and all other $\overline{E F}$ flag outputs connected to the $\overline{E F}$ flag bus are placed into High-Impedance. The user does nothave to select this High-Impedance state, a given multi-queue flow-control device will automatically place its $\overline{\text { EFF flagoutputintoHigh-Impedancewhennone }}$ of its queues are selected for read operations.

When queues withina single device are selected for read operations, the $\overline{\mathrm{EF}}$ flag output of that device will maintain control of the $\overline{\mathrm{EF}}$ flag bus. Its $\overline{\mathrm{EF}}$ flag will simply update between queue switche to show the respective queue status.

Themulti-queuedeviceplacesits $\overline{\mathrm{EF}}$ flagoutputinto High-Impedancebased onthe 1-3bitID code(1 iftwo multi-queue are configured with a maximum total of 256 queues, 2 if four devices are used totalling a maximum of 256 queues, and 3ifthereare up to eight devices with a maximum total of 256 queues) found inthe3mostsignificantbits ofthe readqueue addressbus, RDADD. Ifthe3most significantbits of RDADD matchthe 1-3bitID code setup onthestatic inputs, ID0, ID1 and ID2 then the $\overline{E F}$ flag output of the respective device will be in a LowImpedance state. Ifthey do not match, thenthe $\overline{\mathrm{EF}}$ flag output of the respective device will be in a High-Impedance state. See Figure 51, Output Ready Flag Timing for details of flag operation, including when more than one device is connected in expansion.

ALMOST FULL FLAG

As previously mentioned the multi-queue flow-control device provides a single Programmable Almost Fullflagoutput, $\overline{\mathrm{PAF}}$. The $\overline{\text { PAF flag outputprovides }}$ astatus of the almostfull condition for the active queue currently selected on the write port for write operations. Internally the multi-queue flow-control device monitors and maintains a status of the almost full condition of all queues within it, however only the queue that is selected for write operations has its full status outputtothe $\overline{\text { PAF flag. This dedicatedflagis often referredtoas the "activequeue }}$ almost full flag". The position of the $\overline{\mathrm{PAF}}$ flag boundary within a queue can be at any point within that queues depth. This location can be user programmed via the serial port or one of the default values (8 or 128) can be selected if the userhas performed default programming.

As mentioned, every queue within a multi-queue device has its ownalmost full status, when a queue is selected on the write port, this status is outputviathe $\overline{\mathrm{PAF}}$ flag. The $\overline{\mathrm{PAF}}$ flag valueforeachqueue is programmedduring multi-queue device programming (along with the number of queues, queue depths and almostempty values). The $\overline{\mathrm{PAF}}$ offset value, m, for a respective queue can be programmed to be anywherebetween '0' and ' D ', where ' D ' is the total memory depthforthat queue. The $\overline{\mathrm{PAF}}$ value of differentqueues withinthe same device can be different values.

When queue switches are being made on the write port, the $\overline{\text { PAF }}$ flag output will switch to the new queue and provide the user with the new queue status, on thethird cycle after anew queue selection is made, on the sameWCLK cycle that data can actually be written to the new queue. That is, a new queue can be selected on the write portvia the WRADD bus, WADEN enable and a rising edge of WCLK. Onthe third rising edge of WCLKfollowing a queue selection, the PAF flagoutputwill show the full status of the newly selected queue. The $\overline{\text { PAF }}$ is flag output is double register buffered, so when a write operation occurs at the almostfull boundary causing the selected queue status to go almostfull the $\overline{\mathrm{PAF}}$ will go LOW2 WCLK cycles after the write. The same is true when a read occurs, there will be a 2 WCLK cycle delay after the read operation.

So the $\overline{\text { PAF }}$ flag delay from a write operation to $\overline{\text { PAF flag LOW is } 2 W C L K+}$ tWAF. The delay from a read operation to $\overline{\text { PAF flag HIGH is tSKEW2 }+ \text { WCLK }+~}$ tWAF.

Note, if tSKEW is violated there will be one added WCLK cycle delay.
The $\overline{\text { PAF }}$ flag is synchronous to the WCLK and all transitions of the $\overline{\text { PAF }}$ flag occur based on a rising edge of WCLK. Internally the multi-queue device monitors and keeps a record of the almostfull status for all queues. Itis possible thatthe status of $\overline{\mathrm{PAF}}$ flag maybe changing internally even thoughthatflag is not the active queue flag (selected on the write port). A queue selected on the read port may experience a change of its internal almostfullflag status based on read operations. The multi-queue flow-control device also provides a duplicate of the $\overline{\mathrm{PAF}}$ flag onthe $\overline{\mathrm{PAF}}[7: 0]$ flag bus, this will be discussed in detail in a later section of the data sheet.
See Figures 23 and 24 for Almost Full flag timing and queue switching.

ALMOSTEMPTYFLAG

As previously mentioned the multi-queue flow-control device provides a single Programmable Almost Empty flag output, $\overline{\mathrm{PAE}}$. The $\overline{\mathrm{PAE}}$ flag output provides a status of the almost empty condition for the active queue currently selected on the read portfor read operations. Internally the multi-queue flowcontrol device monitors and maintains a status of the almostempty condition of all queues withinit, however only the queue that is selected for read operations has its empty status outputto the $\overline{\text { PAE }}$ flag. This dedicated flag is often referred toasthe "activequeuealmostempty flag". The position ofthe $\overline{\text { PAE flagboundary }}$ within a queue can be at any point within that queues depth. This location can be user programmed via the serial port or one of the default values (8 or 128) can be selected ifthe userhas performed default programming.
As mentioned, every queue within a multi-queue device has its own almost empty status, when a queue is selected on the read port, this status is outputvia
 queue device programming (along with the number of queues, queue depths and almostfullvalues). The $\overline{\text { PAE }}$ offset value, n, for a respective queue can be programmed to be anywhere between '0' and ' D ', where ' D ' is the total memory depth for that queue. The $\overline{P A E}$ value of different queues within the same device can be differentvalues.
When queue switches are being made on the read port, the $\overline{\text { PAE }}$ flagoutput will switch to the new queue and provide the user with the new queue status, onthe third cycle after anew queue selection is made, onthe same RCLK cycle that data actually falls through to the output register from the new queue. That is, a new queue can be selected on the read portviathe RDADD bus, RADEN enable and a rising edge of RCLK. On the third rising edge of RCLK following a queue selection, the data word from the new queue will be available at the output register and the $\overline{\text { PAE }}$ flag output will show the empty status of the newly selected queue. The $\overline{\mathrm{PAE}}$ is flag output is double register buffered, so when a read operationoccurs atthe almostempty boundary causing the selected queue status to go almost empty the $\overline{\text { PAE }}$ will go LOW2 RCLK cycles after the read. The same is true when a write occurs, there will be a 3 RCLK cycle delay after the write operation.
So the $\overline{\mathrm{PAE}}$ flag delay from a read operation to $\overline{\mathrm{PAE}}$ flag LOW is 2 RCLK + tRAE. The delay from a write operation to $\overline{\text { PAE }}$ flag HIGH is tSKEW2 + RCLK + trae.

Note, if tSKEw is violated there will be one added RCLK cycle delay.
The $\overline{\text { PAE }}$ flag is synchronous to the RCLK and all transitions of the $\overline{\text { PAE }}$ flag occur based on a rising edge of RCLK. Internally the multi-queue device monitors andkeepsarecordofthealmostemptystatusforallqueues. Itispossible thatthe status ofa $\overline{\mathrm{PAE}}$ flag maybe changing internally eventhoughthatflag is not the active queue flag (selected on the read port). A queue selected on the
write portmay experienceachange of its internalalmostempty flagstatus based on write operations. The multi-queue flow-control device also provides a duplicate ofthe $\overline{\mathrm{PAE}}$ flag onthe $\overline{\mathrm{PAE}}[7: 0]$ flagbus, this will be discussed in detail in a later section of the data sheet.

See Figures 25 and 26 for Almost Empty flag timing and queue switching.

PAFn - DIRECT BUS

IfFM isLOW atmasterresetthenthe $\overline{\text { PAF }}$ nbus operates in Direct(addressed) mode. In direct mode the user can address the status word of queues they require and it will be placed on to the $\overline{\mathrm{PAF}} \mathrm{n}$ bus. For example, consider the operation of the $\overline{\mathrm{PAF}}$ n bus when 26 queues have been setup. To output status of the firststatus word, Queue[0:7]the WRADD bus is used in conjunction with the FSTR ($\overline{\text { PAF }}$ flag strobe) input and WCLK. The address present on the 4 leastsignificantbits oftheWRADD bus with FSTRHIGH will be selected as the status word address on a rising edge of WCLK. To address status word 0 , Queue[0:7] the WRADD bus should be loaded with "0010000", the $\overline{\text { PAF }}$ nbus will changestatustoshow thenewstatus wordselected 1WCLK cycle afterstatus word selection. $\overline{\text { PAFn }}[0: 7]$ gets status of queues, Queue[0:7] respectively.

Toaddress status word 1, Queue[8:15], theWRADD address is "00100001". $\overline{\text { PAFn }}[0: 7]$ gets status of queues, Queue[8:15] respectively. Toaddressthe2nd status word, Queue[16:23], the WRADD address is "00100010". $\overline{\text { PAF }}[0: 7$] gets status of queues, Queue[16:23] respectively. To address the 3rd status word, Queue[24:31], the WRADD address is "00100011". $\overline{\text { PAF }}[0: 1]$ gets status of queues, Queue[24:25] respectively. Remember, only 26 queues were setup, so when status word 4 is selected the unused outputs $\overline{\mathrm{PAF}}[2: 7]$ will be don'tcare states.

Note, that if a read or write operation is occurring to a specific queue, say queue ' x ' onthe same cycle as a status word switch which will include the queue ' x ', thenthere may be an extraWCLK cycle delay before that queues status is correctly shown on the respective outputofthe $\overline{\mathrm{PAF}}$ nbus. However, the active $\overline{\mathrm{PAF}}$ flag will show correct status at all times.

Status words can be selected on consecutive clock cycles, that is the status word on the $\overline{\text { PAF }}$ b bus can change every WCLK cycle. Also, data present on the inputbus, Din, can be written into a Queue on the sameWCLK rising edge that a status word is being selected, the only restriction being that a write queue selection and $\overline{\text { PAF }}$ n status word selection cannot be made on the same cycle.

If 8 or less queues are setup then queues, Queue[0:7] have their $\overline{P A F}$ status output on $\overline{\mathrm{PAF}}[0: 7]$ constantly.

When the multi-queue devices are connected in expansion of morethan one device the $\overline{\text { PAF }}$ n busses of all devices are connected together, when switching between status words of different devices the user must utilize the 1-3 most significant bits of the WRADD address bus (as well as the 2LSB's). These 13MSb's correspond to the device ID inputs, which are the static inputs, ID0, ID1 \& ID2.

Please refer to Figure $63 \overline{\text { PAFn }}$ - Direct Mode Status Word Selection for timing information. Also refer to Table 4, Write Address Bus, WRADD.

PAFn - POLLED BUS

IfFM is HIGH atmaster reset thenthe $\overline{\mathrm{PAF}}$ nbus operates in Polled (looped) mode. In polled modethe $\overline{\text { PAF }}$ bus only cycles through the number of status words required to display the status of the number of queues that have been setup in the part. Every rising edge of the WCLK causes the next status word to be loaded on the $\overline{\text { PAF }} n$ bus. The device configured as the master (MAST inputtiedHIGH), will takecontrol ofthe $\overline{\text { PAF }}$ nafterMRS goes LOW. Forthe whole WCLK cycle that the first status word is on $\overline{\mathrm{PAF}}$ nthe FSYNC ($\overline{\mathrm{PAF}}$ n bus sync) output will be HIGH, for all other status words, this FSYNC output will be LOW. This FSYNC output provides the user with a mark with which they can
synchronize to the $\overline{\text { PAF }}$ nbus, FSYNC is always HIGHfortheWCLK cycle that the first status word of a device is present on the $\overline{\text { PAF }} n$ bus.

When devices are connected in expansion configuration, only one device will be set as the Master (ID = '000'), MAST inputtied HIGH, all other devices will have MAST tied LOW. The master device is the first device to take control of the $\overline{\text { PAF }}$ bus and will place its firststatus word on the bus on the rising edge of WCLK. For the nextnWCLK cycles ($\mathrm{n}=$ number of queues divided by 8 with n being increased by one for any remainder) the master device will maintain control of the $\overline{\text { PAF }}$ bus and cycle its status words through it, all other devices holdtheir $\overline{\text { PAF }}$ noutputs inHigh-Impedance. Whenthemasterdevice has cycled all of its status words it passes a token to the next device in the chain and that device assumes control of the $\overline{\text { PAF }}$ n bus and then cycles its status words and so on, the $\overline{\mathrm{PAF}}$ n bus control token being passed onfrom device to device. This token passing is done viathe FXO outputs and FXI inputs of the devices ("PAF Expansion Out" and "PAF ExpansionIn"). TheFXO output of themasterdevice connects totheFXI ofthe seconddevice inthe chain and the FXO of the second connects to the FXI of the third and so on. The final device in achainhasits FXO connected to the FXI of the first device, so that once the $\overline{\text { PAF }}$ bus has cycled through all status words of all devices, control of the $\overline{\mathrm{PAF}}$ n will pass tothe master device again and so on. The FSYNC of each respective device will operate independently andsimply indicate whenthatrespective devicehas takencontrol of the bus and is placing its first status word on to the $\overline{\text { PAF }}$ b bus.

When operating in single device mode the FXI input must be connected to the FXO output of the samedevice. Insingle device modeatoken isstill required to be passed into the device for accessing the $\overline{\text { PAF }} n$ bus.
Please refer to Figure 66, $\overline{P A F}$ Bus - Polled Modefor timing information.

$\overline{\text { PAE }} n / \overline{\text { PR }}$ n FLAG BUS OPERATION

The IDT72P51749/72P51759/72P51769 multi-queue flow-control device can be configured for up to 128 queues, each queue having its own almost empty/ packet ready status. An active queue has its flag status output to the discreteflags, $\overline{\mathrm{OR}}, \overline{\mathrm{PAE}}$ and $\overline{\mathrm{PR}}$, on the read port. Queues that are not selected for a read operation can have their $\overline{\text { PAE }} / \overline{\mathrm{PR}}$ status monitored viathe $\overline{\mathrm{PAE}} \mathrm{n} / \overline{\mathrm{PR}} \mathrm{n}$ bus. The $\overline{\text { PAEn }} / \overline{\text { PR }}$ nlag bus is 8 bits wide, so that 8 queues at atime can have their status outputto the bus. If9 or more queues are setup within a device then there are 2 methods by which the device can share the bus between queues, "Direct" mode and "Polled"modedepending onthestate of the FM (FlagMode) input during a Master Reset. If 8 or less queues are setup within a device then each will have its own dedicated outputfromthebus. If 8 orless queues are setup in single device mode, itis recommended to configure the $\overline{\text { PAFn }}$ bus to polled mode as it does not require using the write address (WRADD).

$\overline{\text { PAEE }} / \overline{\text { PRn }}$ - DIRECT BUS

If FM is LOW at master reset then the $\overline{\text { PAE }} n / \overline{\text { PR }} n$ bus operates in Direct (addressed) mode. In direct mode the user can address the status word of queues they require to be placed on to the $\overline{\text { PAE }} / / \overline{\text { PR }} \mathrm{n}$ bus. For example, consider the operation of the $\overline{\mathrm{PAE}} n / \overline{\mathrm{PR}}$ nbus when 26 queues have been setup. To output status of the first status word, Queue[0:7]the RDADD bus is used in conjunction withthe ESTR ($\overline{\mathrm{PAE}} / \overline{\mathrm{PR}}$ flagstrobe) inputand RCLK. The address present on the 2 least significant bits of the RDADD bus with ESTR HIGH will be selected asthe status word address on a rising edge of RCLK. Soto address status word 1, Queue[0:7] the RDADD bus should be loaded with "xxxx0000", the $\overline{\mathrm{PAE}} n / \overline{\mathrm{PR}}$ n bus will change status to show the new status word selected 1 RCLK cycle after status word selection. $\overline{\text { PAEn }}[0: 7]$ gets status of queues, Queue[0:7]respectively.

To address the second status word, Queue[8:15], the RDADD address is "xxxx0001". $\overline{\text { PAEn }}[0: 7]$ gets status of queues, Queue[8:15] respectively. To

TABLE 9 - FLAG OPERATION BOUNDARIES \& TIMING

Output Ready, $\overline{\mathrm{EF}} / \overline{\mathrm{OR}}$ Flag Boundary	
I/O Set-Up	$\overline{\mathrm{OR}}$ Boundary Condition
In36 to out36 (Almost Empty Mode) (Both ports selectedforsamequeue when the $1^{\text {st }}$ Word is written in)	$\overline{\mathrm{OR}}$ Goes LOW after $1^{\text {st }}$ Write (see note 1 below fortiming)
In36 to out36 (Packet Mode) (Both ports selectedfor samequeue when the $1^{\text {st }}$ Word is written in)	$\overline{\mathrm{OR}}$ Goes LOW after $1^{\text {st }}$ Write (see note 2 below fortiming)
In36 to out18 (Both ports selectedfor samequeue when the $1^{\text {st }}$ Word is written in)	$\overline{\mathrm{OR}}$ Goes LOW after ${ }^{\text {st }}$ Write (see note 1 below for timing)
In36 to out9 (Both ports selectedfor samequeue when the $1^{\text {st }}$ Word is written in)	$\overline{\mathrm{OR}}$ Goes LOW after $1^{\text {st }}$ Write (see note 1 below fortiming)
In18 to out36 (Both ports selectedfor samequeue when the $1^{\text {st }}$ Word is written in)	$\overline{\mathrm{OR}}$ Goes LOW after $1^{\text {st }}$ Write (see note 1 below for timing)
In9 to out36 (Both ports selectedfor samequeue when the $1^{\text {st }}$ Word is written in)	$\overline{\mathrm{OR}}$ Goes LOW after $1^{\text {st }}$ Write (see note 1 below for timing)

Full Flag, FF Boundary	
I/O Set-Up	$\overline{\text { FF Boundary Condition }}$
In36 to out36 (Both ports selectedfor samequeue when the $1^{\text {st }}$ Word is written in)	$\overline{\text { FF }}$ Goes LOW after D +1 Writes (see note below for timing)
In36 to out36 (Write portonly selectedforqueue when the $1^{\text {st }}$ Word is written in)	$\overline{F F}$ Goes LOW after D Writes (see note below fortiming)
In36 to out18 (Both ports selectedforsamequeue when the $1^{\text {st }}$ Word is written in)	$\overline{F F}$ Goes LOW after D Writes (see note belowfortiming)
In36 to out18 (Write portonly selectedforqueue when the $1^{\text {st }}$ Word is written in)	$\overline{F F}$ Goes LOW after D Writes (see note below for timing)
In36 to out9 (Both portsselectedforsamequeue when the $1^{\text {st }}$ Word is written in)	FF Goes LOW after D Writes (seenote belowfortiming)
In36 to out9 (Write portonly selectedforqueue when the $1^{\text {st }}$ Word is written in)	$\overline{F F}$ Goes LOW after D Writes (see note below fortiming)
In18 to out36 (Both ports selectedfor samequeue when the $1^{\text {st }}$ Word is written in)	$\overline{\text { FF }}$ Goes LOW after ([D+1] x 2) Writes (see note below for timing)
In18 to out36 (Write portonly selectedforqueue when the $1^{\text {st }}$ Word is written in)	$\overline{F F}$ Goes LOW after (D x2) Writes (see note below for timing)
In9 to out36 (Both ports selectedforsamequeue when the $1^{\text {st }}$ Word is written in)	$\overline{\text { FF }}$ Goes LOW after ($[\mathrm{D}+1] \times 4$) Writes (see note below fortiming)
In9 to out36 (Write portonly selectedforqueue when the $1^{\text {st }}$ Word is written in)	$\overline{F F}$ Goes LOW after (D x 4) Writes (see note below fortiming)

1. $\overline{\mathrm{OR}}$ Timing

Assertion:
Write to $\overline{O R}$ LOW: tSKEW1 + RCLK + tROV
If tSKEW1 is violated there may be 1 added clock: tSKEW $1+2$ RCLK + tROV
De-assertion:
Read Operation to $\overline{\mathrm{OR}}$ HIGH: tROV

2. $\overline{\mathrm{OR}}$ Timing when in Packet Mode (36 in to 36 out only)

Assertion:
Write to $\overline{\mathrm{OR}}$ LOW: tSKEW4 + RCLK + tROV
If tSKEW4 is violated there may be 1 added clock: tSKEW4 + 2 RCLK + tROV
De-assertion:
Read Operation to $\overline{O R}$ HIGH: tROV

Programmable Almost Full Flag, $\overline{\text { PAF }}$ \& $\overline{\text { PAF }}$ n Bus Boundary	
I/O Set-Up	$\overline{\text { PAF }}$ \& $\overline{\text { PAF }}$ B Boundary
in36 to out36 (Both ports selected for same queue when the $1^{\text {st }}$ Word is written in until the boundary is reached)	$\overline{\text { PAF }} / \overline{\text { PAF }}$ Goes LOW after D+1-mWrites (seenotebelowfortiming)
in36 to out36 (Write port only selected for same queue when the $1^{\text {st }}$ Word is written in until the boundary is reached)	$\overline{\text { PAF }} / \overline{\text { PAF }}$ Goes LOW after D-mWrites (seenote belowfortiming)
in36 to out18	$\overline{\text { PAF/PAFn }}$ Goes LOW atter D-mWrites(seebelowfortiming)
in36 to out9	$\overline{\text { PAF/PAFn }}$ Goes LOW after D-mWrites(seebelowfortiming)
in18 to out36	$\overline{\text { PAF }} / \overline{\text { PAF }}$ Goes LOW after ([D+1-m] x 2) Writes (see note belowfortiming)
in9 to out36	$\overline{\text { PAF }} / \overline{\text { PAF }}$ Goes LOW after ([D+1-m] x 4) Writes (seenotebelowfortiming)

NOTE:

D = Queue Depth
$\bar{F} \bar{F}$ Timing
Assertion:
Write Operation to FF LOW: twFF
De-assertion:
Read to FF HIGH: tSKEW1 + tWFF
If tSKEW1 is violated there may be 1 added clock: tSKEW1+WCLK +tWFF

NOTE:

D = Queue Depth
$\mathrm{m}=$ Almost Full Offset value.
Default values: if DF is LOW at Master Reset then $m=8$
if DF is HIGH at Master Reset then $\mathrm{m}=128$
$\overline{\text { PAF }}$ Timing
Assertion: Write Operation to PAF LOW: 2 WCLK + twAF
De-assertion: Read to PAF HIGH: tSKEW2 + WCLK + twaF
If tSKEW2 is violated there may be 1 added clock: tSKEW2 +2 WCLK + tWAF

$\overline{\text { PAF }} \mathrm{n}$ Timing

Assertion: Write Operation to $\overline{\text { PAFn LOW: }} 2$ WCLK + tPAF
De-assertion: Read to PAFn HIGH: tSKEW3 + WCLK ${ }^{*}+$ tPAF
If tSKEW3 is violated there may be 1 added clock: tSKEW $3+2$ WCLK + tPAF

* If a queue switch is occurring on the write port at the point of flag assertion or de-assertion there may be one additional WCLK clock cycle delay.

TABLE 9 - FLAG OPERATION BOUNDARIES \& TIMING (CONTINUED)

Programmable Almost Empty Flag, $\overline{\text { PAE }}$ Boundary	
I/O Set-Up	$\overline{\text { PAE Assertion }}$
in36 to out36 (Both ports selected for same queue when the $1^{\text {st }}$ Word is written in until the boundary is reached)	$\overline{\text { PAE Goes HIGH after n+2 }}$ Writes (see note belowfortiming)
in36 to out18 (Both ports selected for same queue when the $1^{\text {st }}$ Word is written in until the boundary is reached)	$\overline{\text { PAE Goes HIGH after n+1 }}$ Writes (seenote belowfortiming)
in36 to out9 (Both ports selected for samequeue when the $1^{\text {st }}$ Word is written in until the boundary is reached)	$\overline{\text { PAE Goes HIGH after n+1 }}$ Writes (seenote below for timing)
in18 to out36 (Both ports selected for same queue when the $1^{\text {st }}$ Word is written in until the boundary is reached)	$\overline{\text { PAE Goes HIGH after }}$ ([n+2] x 2) Writes (seenote belowfortiming)
in9 to out36 (Both ports selected for same queue when the $1^{\text {st }}$ Word is written in until the boundary is reached)	$\overline{\text { PAE Goes HIGH after }}$ ([n+2] x 4) Writes (see note belowfortiming)

NOTE:
$\mathrm{n}=$ Almost Empty Offset value.
Default values: if DF is LOW at Master Reset then $n=8$ if DF is HIGH at Master Reset then $n=128$

$\overline{\text { PAE Timing }}$

Assertion: Read Operation to $\overline{\text { PAE }}$ LOW: 2 RCLK + tRAE
De-assertion: Write to PAE HIGH: tSKEW2 + RCLK + tRAE
If tSKEW2 is violated there may be 1 added clock: tSKEW2 +2 RCLK + tRAE

PACKET READY FLAG, $\overline{P R} B O U N D A R Y$

Assertion

Both the rising and falling edges of $\overline{\mathrm{PR}}$ are synchronous to RCLK.
$\overline{P R}$ Falling Edge occurs upon writing the first TEOP marker, on input D35, (assuming a TSOP marker, on input D34 has previously been written). i.e. a complete packetis available within aqueue.

Timing:

From WCLK rising edge writing the TEOP word PR goes LOW after: tskEw4 + 2 RCLK + tPR
Iftskewwis violated:
$\overline{\text { PR goes LOW after tSKEW4 }+3 \text { RCLK }+ \text { tPR }}$

De-assertion:

$\overline{\text { PR Rising Edge occurs upon readingthe last RSOP marker, from output Q34. }}$
i.e. there are no more complete packets available within the queue.

Timing:

From RCLK rising edge Reading the RSOP word the $\overline{\mathrm{PR}}$ goes HIGH after: 3 RCLK + tPR
(Please referto Figure 57, Data Output(Receive) PacketMode ofOperation fortiming diagram).

Programmable Almost Empty Flag Bus, $\overline{\text { PAEn Boundary }}$	
I/O Set-Up	PAEn Boundary Condition
in36 to out36 (Both ports selected for same queue whenthe $1^{\text {st }}$ Word is written in until the boundary is reached)	$\overline{\text { PAEn Goes HIGH after }}$ $\mathrm{n}+2$ Writes (seenote belowfortiming)
in36 to out36 (Write portonly selected for samequeue when the $1^{\text {st }}$ Word is written in until the boundary is reached)	$\overline{\text { PAEn Goes HIGH after }}$ $\mathrm{n}+1$ Writes (see note below for timing)
in36 to out18	$\overline{\text { PAEn }}$ Goes HIGH after $\mathrm{n}+1$ Writes (seebelow for timing) PAE
in36 to out9	PAEn Goes HIGH after n+1 Writes (see below fortiming)
$\begin{aligned} & \text { in18 to out36 } \\ & \text { (Both ports selected for same queue when the } 1^{\text {st }} \\ & \text { Word is written in until the boundary is reached) } \end{aligned}$	$\overline{\text { PAEn Goes HIGH after }}$ ([n+2] x 2) Writes (seenote belowfortiming)
in18 to out36 (Write portonly selected for samequeue when the $1^{\text {st }}$ Word is written in until the boundary is reached)	$\overline{\text { PAEn Goes HIGH after }}$ ([n+1] x 2) Writes (see note below fortiming)
in9 to out36 (Both ports selectedfor same queue when the $1^{\text {st }}$ Word is written in until the boundary is reached)	PAEn Goes HIGH after ([n+2] x 4) Writes (see note belowfortiming)
in9 to out36 (Write portonly selected for samequeue when the $1^{\text {st }}$ Word is written in until the boundary is reached)	$\overline{\text { PAEn Goes HIGH after }}$ ([n+1] x 4) Writes (see note below fortiming)

NOTE:
n = Almost Empty Offset value.
Default values: if DF is LOW at Master Reset then $\mathrm{n}=8$ if DF is H GH at Master Reset then $\mathrm{n}=128$
$\overline{\text { PAEEn Timing }}$
Assertion: Read Operation to $\overline{\text { PAEn LOW: } 2 \text { RCLK }}+$ tPAE
De-assertion: Write to $\overline{\text { PAEn }}$ HIGH: tSKEW + RCLK + tPAE
If tSKEW 3 is violated there may be 1 added clock: tSKEW $3+2$ RCLK ${ }^{*}+$ tPAE

* If a queue switch is occurring on the read port at the point of flag assertion or de-assertion there may be one additional RCLK clock cycle delay.

PACKET READY FLAG BUS, $\overline{\text { PR }} \mathrm{n}$ BOUNDARY

Assertion:

Both the rising and falling edges of $\overline{\mathrm{PR}} \mathrm{n}$ are synchronous to RCLK.
$\overline{\text { PRn Falling Edge occurs upon writing the first TEOP marker, on input D35, }}$ (assuming a TSOP marker, on input D34 has previously been written). i.e. a complete packetis available within a queue.

Timing:

From WCLK rising edge writing the TEOP word $\overline{\text { PR }}$ goes LOW after: tSkEW4 + 2 RCLK ${ }^{*}+$ tPAE
If tskews is violated $\overline{\text { PRn }}$ goes LOW after tskew $4+3$ RCLK + tPAE
*Ifaqueue switch is occurring onthe read portatthe point of flag assertion there may be one additional RCLK clock cycle delay.

De-assertion:

$\overline{\text { PR Rising Edge occurs upon reading the last RSOP marker, from output Q34. }}$ i.e. there are no more complete packets available within the queue.

Timing:

From RCLK rising edge Reading the RSOP word the $\overline{\mathrm{PR}}$ goes HIGH after: 3RCLK* + tPAE
*If queue switch is occurring on the read portat the point of flag assertion or de-assertion there may be one additional RCLK clock cycle delay.
addressthethirdstatus word, Queue[16:23], the RDADDaddress is "xxxx0010". $\overline{\text { PAE }}[0: 7]$ gets status of queues, Queue[16:23] respectively. To address the fourth status word, Queue[24:31], the RDADD address is "xxxx0011". $\overline{\text { PAE }}[0: 1]$ gets status of queues, Queue[24:25] respectively. Remember, only 26 queues were setup, so when status word 4 is selected the unused outputs PAE[2:7] will be don't care states.

Note, that if a read or write operation is occurring to a specific queue, say queue 'x' on the same cycle as a status word switch which will include the queue ' x ', then there may be an extra RCLK cycle delay before that queues status is correctly shown on the respective output of the $\overline{\mathrm{PAE}} \mathrm{n} / \overline{\mathrm{PR}} \mathrm{n}$ bus.

Status words can be selected on consecutive clock cycles, that is the status word on the $\overline{\text { PAE }} n / \overline{\text { PR }}$ n bus can change every RCLK cycle. Also, data can be read out of a Queue on the same RCLK rising edge that a status word is being selected, the only restriction being thata read queue selection and $\overline{\mathrm{PAE}} n / \overline{\mathrm{PR}} \mathrm{n}$ status word selection cannot be made on the same RCLK cycle.

If 8 or less queues are setup then queues, Queue[0:7] have their $\overline{P A E} / \overline{P R}$ status output on $\overline{\mathrm{PAE}}[0: 7]$ constantly.

Whenthe multi-queue devices are connected in expansion of morethan one device the $\overline{\text { PAE }} n / \overline{\mathrm{PR}} \mathrm{n}$ busses of all devices are connected together, when switching between status words of different devices the user must utilize the 3 mostsignificantbits of the RDADD address bus (aswell asthe2LSB's). These 3MSb's correspond tothe device ID inputs, which are the static inputs, ID0, ID1 \& ID2.

Please referto Figure 62, $\overline{P A E} n / \overline{P R n}$-DirectMode Status Word Selection fortiming information. Also refer to Table 5, Read Address Bus, RDADD.

PAEn - POLLED BUS

If FM is HIGH at master reset then the $\overline{\text { PAE }} / / \overline{\text { PR }}$ n bus operates in Polled (looped) mode. In polledmodethe $\overline{\text { PAE }} n / \overline{\text { PR }}$ nbus automatically cyclesthrough the 4 status words withinthe device regardless of how many queues have been setup in the part. Every rising edge of the RCLK causes the next status word to be loaded onthe $\overline{\text { PAE }} n / \overline{\text { PR }} n$ bus. The device configuredas the master(MAST inputtied HIGH), will take control of the $\overline{\text { PAEn }} / \overline{\text { PR n after }} \overline{\text { MRS }}$ goes LOW. For the whole RCLK cycle that the first status word is on $\overline{\text { PAE }} / \overline{\text { PR } n ~ t h e ~ E S Y N C ~}$ ($\overline{\text { PAE }} / / \overline{\text { PR}}$ nbus sync) outputwill beHIGH, for all otherstatus words, this ESYNC outputwill beLOW. ThisESYNC outputprovides the userwith a mark with which they can synchronize to the $\overline{\mathrm{PAE}} \mathrm{n} / \overline{\mathrm{PR}} \mathrm{n}$ bus, ESYNC is always HIGH for the RCLK cycle that the first status word of a device is present on the $\overline{\mathrm{PAE}} n / \overline{\mathrm{PR}} \mathrm{n}$ bus.

When devices are connected in expansion configuration, only one device will be set as the Master (ID='000'), MAST input tied HIGH, all other devices will haveMAST tied LOW. The master device is the first device to take control of the $\overline{\text { PAEn }} / \overline{\text { PR }}$ n bus and will place its firststatus word on the bus on the rising edge of RCLK after the $\overline{M R S}$ input goes LOW. For the next n RCLK cycles ($\mathrm{n}=$ number of queues divided by 8 with n incrementing by one should there be a remainder) the master device will maintain control of the $\overline{\overline{P A E}} n / \overline{\text { PR }}$ n bus and cycle its status words throughit, all otherdevices hold their $\overline{\text { PAE }} n / \overline{\text { PR n outputs }}$ in High-Impedance. When the master device has cycled all of its status words itpasses atokento the next device inthe chain and that device assumes control of the $\overline{\text { PAE }} n / \overline{\mathrm{PR}}$ n bus and thencycles its status words and soon, the $\overline{\mathrm{PAE}} / / \overline{\mathrm{PR}} \mathrm{n}$ bus control token being passed on from device to device. This token passing is doneviathe EXO outputs and EXI inputs of the devices ("PAE ExpansionOut" and "PAE Expansion In"). The EXO output of the masterdevice connects to the EXI of the second device in the chain and the EXO of the second connects to the EXI of the third and so on. The final device in achainhas its EXO connected tothe EXI of the firstdevice, so that oncethe $\overline{\text { PAE }} n / \overline{\text { PR }} n$ bus has cycled through all status words of all devices, control of the $\overline{\mathrm{PAE}} n / \overline{\mathrm{PR}}$ n will pass to the master device again and so on. The ESYNC of each respective device will operate
independently and simply indicate whenthatrespective devicehastakencontrol of the bus and is placing its first status word on to the $\overline{\text { PAEn }} / \overline{\mathrm{PR}} \mathrm{n}$ bus.

When operating in single device mode the EXI input mustbe connected to the EXO outputof the same device. Insingle device modeatokenisstill required to be passed into the device for accessing the $\overline{\text { PAEn }}$ bus.

PACKET READYFLAG

The 36-bit multi-queueflow-control device provides the user with a Packet Ready feature. Duringa MasterResetPacketMode is selectedbyPKT=HIGH. The $\overline{\text { PR }}$ discreteflag, provides apacketready status ofthe active queue selected on the read port. A packet ready status is individually maintained on all queues; however only the queue selected on the read port has its packet ready status indicated on the $\overline{\text { PR }}$ outputflag. A packet is available on the outputfor reading when both $\overline{\mathrm{PR}}$ and $\overline{\mathrm{OR}}$ are asserted LOW. Ifless than a full packet is available, the $\overline{\mathrm{PR}}$ flag will beHIGH (packet not ready). In packet mode, no words can be read from a queue until a complete packet has been written into that queue, regardless of $\overline{R E N}$.

When packetmode is selectedthe Programmable AlmostEmptybus, $\overline{\text { PAEn, }}$ becomes the Packet Ready bus, $\overline{\text { PR }}$. When configured in Direct Bus (FM = LOW during a master reset), the $\overline{\mathrm{PR}} \mathrm{n}$ bus provides packet ready status in 8 queue increments. The $\overline{\mathrm{PR}}$ n bus supports either Polled or Direct modes of operation. The $\overline{\mathrm{PR}} \mathrm{n}$ mode of operation is configured through the Flag Mode (FM) bit during a Master Reset.
Whenthe multi-queue is configuredforpacketmode operation, the two most significantbits of the 36-bitdatabus are used as "packetmarkers". On the write porthese are bitsD34 (TransmitStartof Packet,) D35 (TransmitEnd of Packet) and onthe read port Q34, Q35. All fourbits are monitored by the packetcontrol logic as datais written into and read outfromthequeues. The packetreadystatus for individual queues is then determined by the packet ready logic.

On the write port D34 is used to "mark" the first word being written into the selected queueasthe "TransmitStartof Packet", TSOP. Tofurtherclarify, when the user requires a word being written to be marked as the start of a packet, the TSOP input(D34) mustbeHIGH for the sameWCLK rising edge as the word thatis written. TheTSOP markerisstored inthequeuealong withthe dataitwas written in until the word is read out of the queue via the read port.
On the write portD35 is used to "mark" the last word of the packet currently being written into the selected queue as the "Transmit End of Packet" TEOP. Whenthe userrequires a word being writtento be markedastheend of apacket, the TEOP inputmust be HIGH for the same WCLK rising edge as the word that is written in. The TEOP marker is stored in the queue along with the dataitwas written in until the word is read out of the queue via the read port.
The packet ready logic monitors all start and end of packet markers both as they enter respective queues via the write portand as they exit queues viathe read port. The multi-queue internal logic increments and decrements a packet counter, which is providedforeachqueue. The functionality ofthe packetready logic provides status as to whether at least one full packet of data is available within the selected queue. A partial packet in a queue is regarded as a packet not ready and $\overline{\mathrm{PR}}$ (active LOW) will be HIGH. In Packet mode, no words can be read from a queue until at least one complete packet has been written into the queue, regardless of $\overline{R E N}$. For example, if a TSOP has been written and some number of words latera TEOP is written a full packet of data is deemed to beavailable, andthe $\overline{\text { PR flagand } \overline{\text { OR }} \text { will goactiveLOW. Consequently ifreads }}$ beginfromaqueue thathas only one complete packetandthe RSOP is detected on the output port as data is being read out, $\overline{\mathrm{PR}}$ will go inactive HIGH. $\overline{\mathrm{OR}}$ will remain LOW indicating there is still valid data being read out of that queue until the REOP is read. The user may proceed with the reading operation until the currentpackethas been read out and nofurthercomplete packets are available. If during thattime anothercomplete packethas been written intothe queue and
the $\overline{\mathrm{PR}}$ flag will again gone active, then reads from the new packet may follow after the current packet has been completely read out.

Thepacketcountersthereforelookforstartof packetmarkersfollowed byend of packet markers and regard data in between the TSOP and TEOP as a full packet of data. The packetmonitoring has no limitation as to how many packets are written intoaqueue, the only constraint is the depth of the queue. Note, there is a minimum allowable packetsize offour words, inclusive ofthe TSOP marker and TEOP marker.

The packet logic does expect a TSOP marker to be followed by a TEOP marker.

If a second TSOP marker is written after a first, it is ignored and the logic regards data between the first TSOP and the firstsubsequent TEOP as the full packet. The same istrueforTEOP; asecond consecutive TEOP markisignored. On the read side the user should regard a packet as being between the first RSOP and the first subsequent REOP and disregard consecutive RSOP markers and/or REOP markers. This is why a TEOP may be writtentwice, using the second TEOP as the "filler" word.

As an example, the user may also wish to implement the use of an "Almost End of Packet"(AEOP) marker. For example, the AEOP can be assigned to data inputbitD33. The purpose of this AEOP marker is to provide an indicator that the end of packet is a fixed (known) number of reads away from the end of packet. This is a useful feature when due to latencies within the system, monitoring the REOP markeralone does notprevent "over reading" of the data from the queue selected. For example, anAEOP markerset 4 writes beforethe TEOP marker provides the device connected to the read port with and "almost end of packet" indication 4 cycles before the end of packet.

The AEOP can be set any number of words before the end of packet determined by user requirements or latencies involved in the system.

See Figure 55, Reading in Packet Mode during a Queue Change, Figure 57, Data Output (Receive) Packet Mode of Operation.

PACKET MODE-MODULO OPERATION

The internal packet ready control logic performs no operation on these modulo bits, they are only informational bits that are passed through with the respective databyte(s).
When utilizing the multi-queue flow-control device in packetmode, the user may also want to consider the implementation of "Modulo" operation or "valid byte marking". Modulo operation may be useful when the packets being transferred through a queue are in a specific byte arrangement even though the databuswidth is 36 bits. InModulo operationthe usercanconcatenatebytes toformaspecific datastringthroughthe multi-queue device. Apossible scenario is where a limited number of bytes are extracted from the packet for either analysis orfiltered for security protection. This will only occur when the first 36 bit word of a packet is written in and the last 36 bit word of packet is written in. Themodulooperationis ameans by whichtheusercanmarkandidentify specific data withinthe Queue.
Onthe write portdatainputbits, D32 (transmitmodulobit2, TMOD2) and D33 (transmit modulo bit 1, TMOD1) can be used as data markers. An example of this could be to use D32 and D33 to code which bytes of a word are part of the packet that is also being marked as the "Start of Marker" or "End of Marker". Conversely on the read port when reading out these marked words, data outputs Q32 (receive modulo bit 2, RMOD2) and Q33 (receive modulo bit 1, RMOD1) will pass on the byte validity information for that word. Referto Table 10 for one example of how the modulo bits may be setup and used. See Figure 57, Data Output (Receive) Packet Mode of Operation.

TABLE 10 - PACKET MODE VALID BYTE FOR x36 BIT WORD CONFIGURATION

TMOD1 (D33)	TMOD2 (D32)	
RMOD1 (Q33)	RMOD2 (Q32)	VALID BYTES
0	0	A, B, C, D
0	1	A
1	0	$\mathrm{~A}, \mathrm{~B}$
1	1	$\mathrm{~A}, \mathrm{~B}, \mathrm{C}$

6714 drw19

PACKET MODE DEMARCATION BITS

The IDT72P51749/72P51759/72P51769 can be configured for packet mode operation. In packet mode the IDT72P51749/72P51759/72P51769 provides thefunctionality to demarcatepackets withinaqueue. The demarcation functionality is only available in packetmode and is usedto generate the Packet Ready (PR) flag.

Thedemarcation of packets/informationis accomplished with the demarcation bits[35:32]. The demarcationbitassignments are; bit35End of Packet(EOP), bit34StartofPacket(SOP), bit33AlmostEndofPacket(AEOP) andbit32Almost Startof Packet(ASOP).

During packetmodebus matching, which istheabilityto setthe write interface and read interface to independentword lengths (i.e. 9 bit word, 18 bit word, 36 bit word), the demarcation bits are located within their respective word length. For example within a 36 bitto 36 bit word bus matching configuration bit 35 is designated as the End of Packet (EOP) and bit34 is Start of Packet(SOP). In an 18 bitto 18 bit word bus matching configuration bit 17 is designated End of Packet (EOP) and bit 16 is Start of Packet. The minimum packet word length required by the IDT72P51749/72P51759/72P51769 is four (4) of the largest words specified within a bus matching configuration. Refer to Figure27-35for designated locations of the demarcation bits within a specific word configuration.

Figure 27. 36bit to 36bit word configuration

NOTES:

1. In a 36 bit word to 18 bit word configuration the 36 bit word is converted to two (2) 18 bit words.
2. An SOP and EOP may not occur within a same word.
3. The x18 bit even words ($0,2,4$, etc.) contain demarcation bits 32 (ASOP) and 34 (SOP).
4. The x18 bit odd words ($1,3,5$, etc.) contain demarcation bits 33 (AEOP) and 35 (EOP).

NOTES:

1. In a 36 bit word to 9 bit word configuration the 36 bit word is converted into four (4)

9 bit words.
2. An SOP and EOP may not occur within a same word.
3. The x 9 bit words contain the demarcation bits as follows;
a. Bit 8 in Word " A " is the Start of Packet (SOP)
b. Bit 8 in Word " B " is the Almost Start of Packet (ASOP).
c. Bit 8 in Word " C " is the Almost End of Packet (AEOP).
d. Bit 8 in Word " D " is the End of Packet (EOP).

Figure 28. 36bit to 18bit word configuration
Figure 29. 36bit to 9bit word configuration

NOTES:

1. In a 18bit word to 36 bit word configuration two (2) eighteen bit words are concatenated to form one x36
bit word.
2. The x36 bit words contain demarcation bits as follows;
a. Bit 35 is End of Packet (EOP)
b. Bit 34 is Start of Packet (SOP).
c. Bit 33 Almost End of Packet (AEOP).
d. Bit 32 Almost Start of Packet (ASOP).

Figure 30. 18bit to 36bit word configuration

NOTES:

1. An SOP and EOP may not occur within a same word.
2. The x18 bit words contain the demarcation bits as follows;
a. Bit 17 is the End of Packet (EOP).
b. Bit 16 is the Start of Packet (SOP).
3. In this configuration there is no ASOP or AEOP demarcation bits.

Figure 31. 18bit to 18bit word configuration

NOTES:

1. In a 18 bit word to 9 bit word configuration a single eighteen bit word is converted into two (2) nine bit words.
2. The $x 9$ bit words contain demarcation bits as follows;
a. Bit 17 is End of Packet (EOP)
b. Bit 16 is Start of Packet (SOP).
3. An SOP and EOP may not occur within the same word.
4. In this configuration there is no ASOP or AEOP demarcation bits.

Figure 32. 18bit to 9bit word configuration

$4^{\text {th }}<7: 0>, 3^{\text {rd }}<7: 0>, 2^{\text {nd }}<7: 0>, 1^{\text {st }}<7: 0>$
NOTES:

1. In a 9 bit word to 36 bit word configuration four (4), nine bit words are concatenated
to form one x36 bit word.
2. The $x 36$ bit words contain demarcation bits as follows;
a. Bit 35 is End of Packet (EOP)
b. Bit 34 is Start of Packet (SOP).
c. Bit 33 Almost End of Packet (AEOP).
d. Bit 32 Almost Start of Packet (ASOP).

Figure 33. 9bit to 36bit word configuration

1716

NOTES:

6714 drw26

1. In a 9 bit word to 18 bit word configuration two (2), nine bit words are concatenated
to form one x18 bit word.
2. The x18 bit words contain demarcation bits as follows;
a. Bit 17 is End of Packet (EOP)
b. Bit 16 is Start of Packet (SOP).
3. An SOP and EOP may not occur within the same word.

Figure 34. 9bit to 18bit word configuration

6714 drw27

NOTES:

1. An SOP and EOP may not occur within the same word.
2. Bit 8 of the $x 9$ bit even words ($0,2,4$, etc.) is checked for a Start of Packet (SOP).
3. Bit 8 of the $x 9 b i t$ odd words ($1,3,5$, etc.) is checked for End of Packet (EOP).
4. The minimum packet word length is 4 words.

Figure 35. 9bit to 9bit word configuration

BUS MATCHING OPERATION

Bus Matching operation between the input port and output port is available. During a master reset of the multi-queue the state of the three setup pins, BM [3:0] (Bus Matching), determinethe input and output portbus widths as shown in Table 11, "Bus Matching Set-Up". 9 bitwords, 18 bitwords and 36 bitwords can be written into and read from the Queues. When writing to or reading from the multi-queue in a bus matching mode, the device orders data in a "Little Endian" format. See Figure 36, Bus Matching Byte Arrangementfor details.

The Full flag and Almost Full flag operation is always based on writes and reads of data widths determined by the write port width. For example, ifthe input port is $x 36$ and the output port is $x 9$, then four data reads from a full queue will be required to cause the full flag to go HIGH (queue not full). Conversely, the Empty flag and Almost Empty flag operations are always based on writes and reads of data widths determined by the read port. For example, if the input port is $x 18$ and the output port is $x 36$, two write operations will be required to cause the Empty flag ($\overline{\mathrm{EF}}$) of an empty queue to go HIGH (queue is not empty).

Note, that the inputportserves all queues within a device, as does the output port, therefore the inputbus widthto all queues is equal (determined by the input portsize) and the outputbus width from all queues is equal (determined by the outputportsize).

TABLE 11 - BUS-MATCHING SET-UP

BM3	BM2	BM1	BM0	Write Port	Read Port
0	0	0	0	x 36	x 36
0	0	0	1	x 36	x 18
0	0	1	0	x 36	x 9
0	0	1	1	x 18	x 36
0	1	0	1	x 18	x 18
0	1	1	0	x 18	x 9
0	1	0	0	x 9	x 36
0	1	1	1	x 9	x 18
1	0	0	1	x 9	x 9

NOTE:

1. Please refer to Table 11, Bus-Matching set-up for details.

Figure 36. Bus-Matching Byte Arrangement
NOTE:

1. $\overline{O E}$ can toggle during this period.

Figure 37. Master Reset

Figure 38. Default Programming

Figure 39. Parallel Programming

[^0]5. Programming of the device must be complete (SENO of the device is LOW),
before any write or read port operations can take place, this includes queue selections.

Figure 40. Queue Programming via Write Address Bus

Figure 41. Queue Programming via Read Address Bus

Figure 42. Serial Port Connection for Serial Programming

WRADD
z
U
$\frac{1}{3}$
3
$\overline{\mathrm{E}}$ is active LOW.
Cycle:
The next available Word W0 of Qy is read out regardless of $\overline{R E N}, 3$ RCLK cycles after queue selection. This is FWFT operation. No reads occur, $\overline{\text { REN }}$ is HIGH
Again, a write to Qx cannot occur on this cycle because it is full, $\overline{\mathrm{FF}}$ is LOW.
Word, W1 is read from Qy, this causes Qy to go "not full", $\overline{F F}$ flag goes HIGH after time, tskew1 + twFF. Note, if tskew1 is violated the time $\overline{F F}$ HIGH will be: tskew1 + WCLK + twFF,
The $\overline{F F}$ flag updates after time twFF to show that queue, Qy is not full.
Word, W2 is read from Qy.
Word, W2 is read from Qy.
Word, Wd-2 is written into
Word, Wd is written into Qy, this causes Qy to go full, $\overline{F F}$ goes LOW.
A write to Qy cannot occur on this cycle because it is full, $\overline{F F}$ is LOW.
Qy goes "not full" based on reading word W1 from Qy on cycle *FF".

Figure 45. Write Queue Select, Mark and Rewrite

NOTES:

1. Qy has previously been selected on both the write and read ports.
2. $\overline{\mathrm{OE}}$ is LOW.
3. The First Word Latency $=$ tSKEW1 + RCLK $+t \mathrm{t}$. If tSKEW1 is violated an additional RCLK cycle must be added.

Figure 46. Write Operations in First Word Fall Through mode

Figure 48. Read Queue Select, Read Operation (IDT mode)

Figure 49. Read Queue Select, Read Operation (FWFT mode)

Figure 50. Read Queve Select, Mark and Reread (IDT mode)

Cycle:
${ }^{*} \mathbf{A}^{*}$ Queue 30 is selected for read operations. It requires 4 clock cycles to switch queues.

* \mathbf{B}^{*} Reads are now enabled. A word from the previously selected queue will be read out.
C Another word from Present Queue (PQ) is read.
D Another word from PQ is read.
${ }^{*} E^{*}$ Wd is read from Q30 of D1. This happens to be the last word of Q30, therefore $\overline{\mathrm{OR}}$ goes HIGH to indicate that the data on the Qout is not valid (Q30 was read to empty). Word, Wd remains on the output bus. Queue 15 is selected for read operations.
F The last word of Q30 remains on the Qout bus, $\overline{\mathrm{OR}}$ is HIGH, indicating that this word has been previously read.
* ${ }^{*}$ * The last word of queue 30 remains on the Qout bus.
* \mathbf{H}^{*} The last word of queue 30 remains on the Qout bus.
। The next word, available from the newly selected queue, Q15 is now read out. This will occur regardless of REN, due to FWFT mode.
${ }^{*} \mathrm{~J}^{*}$ A word, is read from Q15.
K The $\overline{\mathrm{OR}}$ flag stays LOW to indicate that Q15 has additional words available for reading.
Figure 51. Output Ready Flag Timing (In FWFT Mode)

Cycle: \mathbf{C}^{*} A new queue, Qn is selected for read port operations. Qp WD+1 remains on Qout bus. ${ }^{*} \mathbf{D}^{*} \overline{R E N}$ is not asserted therefore no read operation occurs, $Q_{p} W_{D+1}$ remains on Qout bus.
 ${ }^{*} \mathbf{G}^{*}$ Word WD of Qn is read out.
${ }^{\star} I^{*}$ Word W_{D+2} of Q_{n} is read out.
${ }^{*} \mathbf{K}^{*}$ Current Word is kept on the output bus since $\overline{\text { REN }}$ is HIGH. ${ }^{*} \mathrm{~L}^{*}$ Word Qn WD+2 reamins on the Qout bus,
${ }^{*} \mathbf{M}^{*}$ Word Q_{n} WD+2 reamins on the Qout bus.
\mathbf{N}^{*} Word Wd+2 is read from Qp.
\mathbf{O}^{*} Word WD+3 for $Q p$ is read out.
* ${ }^{*}$ Word WD+4 for Qp is read out.

 The data currently in the output register will be available on the output bus (Qout) after time toe. 2. In expansion configuration the $\overline{\mathrm{O}}$ inputs of all devices should be connected together. This allows the output busses of all devices to be High-Impedance controlled.
${ }^{*} \mathbf{A}^{*}$ Queue A is selected for reads. No data will fall through on this cycle, the previous queue was read to empty.
${ }^{*} \mathbf{B}^{*}$ No data will fall through on this cycle, the previous queue was read to empty
* \mathbf{C}^{*} Previous data kept on output bus since there is no read operation.
${ }^{*} \mathbf{E}^{\star}$ Word, W0 from QA is read out regardless of $\overline{R E N}$ due to FWFT operation. The $\overline{\text { OR }}$ flag goes LOW indicating that Word W0 is valid.
${ }^{*} \mathbf{F}^{\star}$ Reads are disabled therefore word, WO of QA remains on the output bus.
${ }^{*} \mathbf{G}^{*}$ Reads are again enabled so word W1 is read from QA.
I Queue, QB is selected on the read port. This queue is actually empty. Word, W3 is read from QA.
${ }^{*} \mathbf{J}^{*}$ Word, W4 is read from QA.
${ }^{*}$ L* * Output Enable is taken HIGH, this is Asynchronous so the output bus goes to High-Impedance after time, toHz.
${ }^{*} \mathbf{M}^{\star}$ Output Ready flag, $\overline{\mathrm{OR}}$ goes HIGH to indicate that QB is empty. Data on the output port is no longer valid.

Figure 55. Reading in Packet Mode during a Queue change

Figure 56. Writing Demarcation Bits (Packet Mode)

NOTES:
2. REN is HIGH.
4. $\overline{\mathrm{PR}}$ will always go LOW on the same cycle or 1 cycle ahead of $\overline{\mathrm{OR}}$ going LOW, (assuming the last word of the packet is the last word in the queue). 5. In Packet mode, words cannot be read from a queue until a complete packet has been written into that queue, regardless of REN.

Figure 57. Data Output (Receive) Packet Mode of Operation

Cycle:
${ }^{*}$ A* * Queue 5 of Device 1 is selected on the write port. A queue within Device 2 had previously been selected. The $\overline{\text { PAF }}$ output of device 1 is High-Impedance.
B No write occurs, WEN is HIGH.
${ }^{*} C^{*}$ No write occurs, $\overline{\text { WEN }}$ is HIGH.
D No write occurs, WEN is HIGH.
E Word, Wd-m is written into Q5 causing the $\overline{\text { PAF }}$ flag to go from LOW to HIGH. The flag latency is 3 WCLK cycles + twaf.
F Queue 9 in device 1 is now selected for write operations. This queue is not almost full, therefore the $\overline{\mathrm{PAF}}$ flag will update after a 3 WCLK + twaF latency.
G The $\overline{\text { PAF }}$ flag goes LOW based on the write 2 cycles earlier.

* ${ }^{*}$ No write occurs, $\overline{W E N}$ is HIGH.
I The $\overline{\mathrm{PAF}}$ flag goes HIGH due to the queue switch to Q9.
Figure 58. Almost Full Flag Timing and Queue Switch

NOTE:

1. The waveform shows the $\overline{\mathrm{PAF}}$ flag operation when no queue switch occurs and a queue is selected on both the write and read ports is being written to then read from at the almost full boundary.
2. Flag Latencies:

Assertion: 2^{*} WCLK + twaF
De-assertion: tskew2 + WCLK + twaf
3. If tSKEW2 is violated there will be one extra WCLK cycle.

Figure 59. Almost Full Flag Timing

Cycle:
${ }^{*} A^{*}$ Queue 30 of Device 1 is selected on the read port. A queue within Device 2 had previously been selected. The $\overline{\text { PAE }}$ flag output and the data outputs of device 1 are High-Impedance.
B No read occurs, $\overline{R E N}$ is HIGH.
C No read occurs, $\overline{\text { REN }}$ is HIGH.
D No read occurs, $\overline{\text { REN }}$ is HIGH
E The $\overline{\mathrm{PAE}}$ flag output now switches to device 1. Word, Wn is read from Q30 due to the FWFT operation. This read operation from Q30 is at the almost empty boundary, therefore $\overline{\text { PAE will go LOW } 2 \text { RCLK cycles later. }}$

* F^{*} Q15 of device 1 is selected.
G The PAE flag goes LOW due to the read from Q30 2 RCLK cycles earlier. Word Wn+1 is read out due to the FWFT operation.
${ }^{*} \mathbf{H}^{*}$ Word, W0 is read from Q15 due to the FWFT operation.
I The PAE flag goes HIGH to show that Q15 is not almost empty.

Figure 60. Almost Empty Flag Timing and Queue Switch (FWFT mode)

NOTE:

1. The waveform here shows the $\overline{\mathrm{PAE}}$ flag operation when no queue switches are occurring and a queue selected on both the write and read ports is being written to then read from at the almost empty boundary.
Flag Latencies:
2. Assertion: 2*RCLK + tRAE

De-assertion: tskew2 + RCLK + traE
3. If tskew2 is violated there will be one extra RCLK cycle.

Figure 61. Almost Empty Flag Timing

NOTES:

1. Status words can be selected on consecutive cycles.
2. On an RCLK cycle that the ESTR is HIGH, the RADEN input must be LOW.
3. There is a latency of 2 RCLK for the PAEn bus to switch.

Figure 62. $\overline{P A E n} / \overline{\text { PR }}$ - Direct Mode - Status Word Selection

6714 drw71

NOTES:

1. Status words can be selected on consecutive cycles.
2. On a WCLK cycle that the FSTR is HIGH, the WADEN input must be LOW.
3. There is a latency of 2 WCLK for the PAFn bus to switch.

Figure 63. $\overline{\text { PAFn }}$ - Direct Mode - Status Word Selection

Figure 64. $\overline{\text { PAEn }}$ - Direct Mode, Flag Operation

Cycle:
A Queue 31 of device 0 is selected for read operations.
The last word in the output register is available on Qout. $\overline{\mathrm{OE}}$ was previously taken LOW so the output bus is in Low-Impedance.
AA Status word 4 of device 0 is selected for the $\overline{\text { PAFn }}$ bus. The bus is currently providing status of a previously selected status word, Quad Y of device X .
B No read operation.
BB Queue 31 of device 0 is selected on the write port.
${ }^{*} C^{*}$ Word, $W x+1$ is read out from the previous queue due to the FWFT effect.
CC $\overline{\text { PAFn }}$ continues to show status of Quad4 DO.
The $\overline{\text { PAFn }}$ bus is updated with the status word selected on the previous cycle, DO Quad 4. $\overline{\text { PAF[7] is LOW showing the status of queue } 31 .}$
The $\overline{\text { PAFn }}$ outputs of the device previously selected on the $\overline{\text { PAF }}$ bus go to High-Impedance.
D A new status word, Quad 0 of Device 7 is selected for the PAFn bus.
Word, Wd-m+1 is read from Q31 D0 due to the FWFT operation. This read is at the $\overline{\text { PAF }}$ b boundary of queue D0 Q31. This read will cause the $\overline{\text { PAF }[7] ~ o u t p u t ~ t o ~ g o ~ f r o m ~}$ LOW to HIGH (almost full to not almost full), after a delay tskew + WCLK + tPAF. If tskews is violated add an extra WCLK cycle.
DD No write operation.
E No read operations occur, $\overline{\text { REN }}$ is HIGH.

The active queue $\overline{\text { PAF }}$ flag of device 0 goes from High-Impedance to Low-Impedance.
Word, Wy is written into D0 Q31.
F Queue 2 of Device 6 is selected for read operations.
FF Word, Wy+1 is written into D0 Q31.
${ }^{*} \mathrm{G}^{*}$ Word, Wd-m+2 is read out due to FWFT operation.
GG $\overline{\text { PAF }[7] ~ a n d ~ t h e ~ d i s c r e t e ~} \overline{\text { PAF }}$ flag go LOW to show the write on cycle *DD* causes Q31 of DO to again go almost full.
Word, Wy+2 is written into DO Q31.

* $\mathrm{H}^{*} \quad$ No read operation.
*। Word, W0 is read from Q0 of D6, selected on cycle *F*, due to FWFT.
Figure 65. $\overline{\text { PAFn }}$ - Direct Mode, Flag Operation

Figure 66. $\overline{\operatorname{PAF}}$ n Bus - Polled Mode

[^1]

NOTES:

1. If devices are configured for Direct operation of the $\overline{\text { PAFn }} / \overline{\text { PAEn flag busses the FXIEXI of the MASTER device should be tied LOW. All other devices tied HIGH. The FXO/EXO }}$ outputs are DNC (Do Not Connect).
2. Q outputs must not be mixed between devices, i.e. $Q 0$ of device 1 must connect to $Q 0$ of device 2, etc.

Figure 67. Expansion using ID codes

NOTES:

1. If devices are configured for Direct operation of the $\overline{\text { PAF }} / \overline{\text { PAEn flag busses the FXI/EXI of the MASTER device should be tied LOW. All other devices tied HIGH. The FXO/EXO }}$ outputs are DNC (Do Not Connect).
2. Q outputs must not be mixed between devices, i.e. Q0 of device 1 must connect to Q 0 of device 2, etc.

Figure 68. Expansion using $\overline{W C S} / \overline{R C S}$

NOTE:

6714 drwA

1. $\overline{\mathrm{RCS}}$ signals are mutually exclusive, (i.e.. only one $\overline{\mathrm{RCS}}$ signal can be asserted (low) at a time).

Figure 69. Expansion Connection Read Chip Select ($\overline{R C S}$)

Figure 70. Expansion Connection Write Chip Select ($\overline{W C S}$)

JTAG INTERFACE

Five additional pins (TDI, TDO, TMS, TCK and TRST) are provided to support the JTAG boundary scan interface. The IDT72P51749/72P51759/ 72P51769 incorporates the necessary tap controller and modified pad cellsto implementtheJTAGfacility.

Note thatIDT provides appropriateBoundary Scan Description Language program files for these devices.

The Standard JTAG interface consists of fourbasic elements:

- Test Access Port (TAP)
- TAP controller
- Instruction Register (IR)
- Data Register Port (DR)

The following sections provide a brief description of each element. For a complete description refertothe IEEE Standard TestAccess PortSpecification (IEEE Std. 1149.1-1990).

The Figure below shows the standard Boundary-Scan Architecture

Figure 71. Boundary Scan Architecture

TEST ACCESS PORT (TAP)

The Tap interface is a general-purpose port that provides access to the internal of the processor.Itconsists offour inputports (TCLK, TMS, TDI, $\overline{\text { TRST }}$) and one output port (TDO).

THE TAPCONTROLLER

The Tap controller is a synchronous finite state machine that responds to TMS and TCLKsignals to generateclock and control signals to the Instruction and Data Registers for capture and update of data.

NOTES:

1. Five consecutive TCK cycles with TMS $=1$ will reset the TAP.
2. TAP controller does not automatically reset upon power-up. The user must provide a reset to the TAP controller (either by TRST or TMS).
3. TAP controller must be reset before normal Queue operations can begin.

Figure 72. TAP Controller State Diagram

Refer to the IEEE Standard Test Access Port Specification (IEEE Std. 1149.1) for the full state diagram.

All state transitions withintheTAP controller occur at the rising edge of the TCLK pulse. The TMS signallevel (0 or 1) determines the state progression that occurs on each TCLK rising edge. The TAP controller takes precedence over the Queue and must be reset after power up of the device. See TRST description for more details on TAP controller reset.

Test-Logic-Reset All testlogic is disabled inthis controller state enabling the normal operation of the IC. The TAP controller state machine is designed in such a way that, no matter what the initial state of the controller is, the Test-Logic-Resetstate canbeentered by holding TMS athigh and pulsing TCK five times. This is the reason why the Test Reset ("TRST) pin is optional.

Run-Test-Idle In this controller state, the test logic in the IC is active only if certain instructions are present. For example, ifaninstruction activates the self test, then it will be executed when the controller enters this state. Thetestlogic in the IC is idles otherwise.

Select-DR-Scan This is a controller state where the decision to enter the Data Path or the Select-IR-Scan state is made.

Select-IR-Scan This is a controller state where the decision to enter the Instruction Pathismade. TheControllercan returntotheTest-Logic-Resetstate otherwise.

Capture-IR Inthis controller state, the shift register bank in the Instruction Register parallelloads a pattern of fixed values on the rising edge of TCK. The last two significant bits are always required to be "01".

Shift-IR In this controller state, the instruction register gets connected betweenTDI and TDO, andthe captured patterngets shifted oneachrisingedge ofTCK. The instruction available onthe TDI pinisalsoshifted intotheinstruction register.
Exit1-IRThis is a controllerstate where a decisionto enter eitherthePauseIR state or Update-IR state is made.

Pause-IR This state is provided in order to allow the shifting of instruction register to be temporarily halted.

Exit2-DR This is a controller state where a decision to enter either the ShiftIR state or Update-IR state is made.
Update-IR Inthis controller state, the instruction in the instruction register is latched in to the latch bank of the Instruction Register on every falling edge of TCK. This instruction also becomes the current instruction once it is latched.

Capture-DR In this controllerstate, the data is parallel loaded into the data registers selected by the current instruction on the rising edge of TCK.

Shift-DR, Exit1-DR, Pause-DR, Exit2-DR and Update-DR These controller states are similar to the Shift-IR, Exit1-IR, Pause-IR, Exit2-IR and Update-IR states in the Instruction path.

THE INSTRUCTION REGISTER

The Instruction register allows an instruction to be shifted in serially into the processor at the rising edge of TCLK.

The Instruction is used to select the test to be performed, or the test data registerto beaccessed, orboth. The instruction shifted intothe register is latched atthe completion of the shifting process when the TAP controller is at UpdateIRstate.

The instruction register must contain 4 bitinstruction register-based cells which canhold instruction data. These mandatory cells are located nearestthe serial outputs they are the leastsignificant bits.

TESTDATA REGISTER

The Test Data register contains three test data registers: the Bypass, the Boundary Scan register and Device ID register.

These registers are connected in parallel between a common serial input and a common serial data output.

The following sections provide a brief description of each element. For a complete description, refertothe IEEE Standard TestAccess Port Specification (IEEE Std. 1149.1-1990).

TEST BYPASS REGISTER

The register is used to allow test data to flow through the device from TDI toTDO. Itcontains asinglestage shiftregisterfor aminimumlength in serial path. Whenthe bypass register is selected by an instruction, the shift register stage is set to a logic zero on the rising edge of TCLK when the TAP controller is in theCapture-DR state.

The operation of the bypass register should not have any effect on the operation of the device in response to the BYPASS instruction.

THE BOUNDARY-SCAN REGISTER

The Boundary Scan Register allows serial data TDI be loaded in to or read out of the processor input/output ports. The Boundary Scan Register is a part of the IEEE 1149.1-1990 Standard JTAG Implementation.

THE DEVICE IDENTIFICATION REGISTER

The Device Identification Register is a Read Only 32-bit register used to specify the manufacturer, part number and version of the processor to be determined through the TAP in response to the IDCODE instruction.

IDT JEDEC ID number is $0 \times B 3$. This translates to 0×33 when the parity is dropped in the 11-bit Manufacturer ID field.

For the IDT72P51749/72P51759/72P51769, the Part Number field contains the following values:

Device	Part\# Field (HEX)
IDT72P51749	047 F
IDT72P51759	0480
IDT72P51769	0481

31(MSb)	2827	1211	O(LSB)
$\begin{aligned} & \text { Version (4 bits) } \\ & \text { 0X0 } \end{aligned}$	Part Number (16-bit)	Manufacturer ID (11-bit) 0X33	1

JTAG DEVICE IDENTIFICATION REGISTER

JTAG INSTRUCTION REGISTER

The Instruction register allows instruction to be serially input into the device when the TAP controller is in the Shift-IR state. The instruction is decoded to performthefollowing:

- Selecttest data registers that may operate while the instruction is current. The other test data registers should not interfere with chip operation and the selected data register.
- Definethe serialtestdataregisterpaththatisusedto shiftdatabetween TDI and TDO during data register scanning.
The Instruction Register is a 4 bit field (i.e. IR3, IR2, IR1, IR0) to decode 16 different possible instructions. Instructions are decoded asfollows.

Hex Value	Instruction	Function
00	EXTEST	SelectBoundary Scan Register
01	SAMPLE/PRELOAD	SelectBoundary Scan Register
02	IDCODE	SelectChipIdentification dataregister
03	HIGH-IMPEDANCE	JTAG
$0 F$	BYPASS	SelectBypass Register

JTAG INSTRUCTION REGISTER DECODING

The following sections provide a brief description of each instruction. For acompletedescription refertothe IEEEStandard TestAccessPortSpecification (IEEE Std. 1149.1-1990).

EXTEST

The required EXTEST instruction places the IC into an external boundarytestmode and selectstheboundary-scan registertobeconnected betweenTDI and TDO. During this instruction, the boundary-scan register is accessed to drive test data off-chip via the boundary outputs and receive test data off-chip via the boundary inputs. As such, the EXTEST instruction is the workhorse of IEEE. Std 1149.1, providing forprobe-less testing of solder-jointopens/shorts and of logic clusterfunction.

IDCODE

Theoptional IDCODE instructionallowsthe ICto remaininitsfunctional mode and selects the optional device identification registerto be connected between TDI and TDO. The device identification register is a 32-bit shift register containing information regarding the IC manufacturer, devicetype, and version code. Accessing the device identification register does not interfere with the operation of the IC. Also, access to the device identification register should be immediately available, via a TAP data-scan operation, after power-up of the IC orafter the TAP has been reset using the optional TRST pin or by otherwise moving to the Test-Logic-Resetstate.

SAMPLE/PRELOAD

The required SAMPLE/PRELOAD instruction allows the IC to remain in a normalfunctional modeandselectstheboundary-scan registertobeconnected betweenTDI and TDO. During this instruction, the boundary-scan register can be accessed via a date scan operation, to take a sample of the functional data entering and leaving the IC. This instruction is also used to preload test data into the boundary-scan register before loading an EXTEST instruction.

HIGH-IMPEDANCE

Theoptional High-Impedance instruction sets all outputs(includingtwo-state as well as three-state types) of an ICto a disabled (high-impedance) state and selects the one-bit bypass register to be connected between TDI and TDO. During this instruction, data can be shiftedthroughthe bypass registerfromTDI to TDO withoutaffecting the condition of the IC outputs.

BYPASS

The required BYPASS instruction allows the IC to remain in a normal functional mode and selects the one-bit bypass register to be connected between TDI and TDO. The BYPASS instruction allows serial data to be transferred through the IC from TDI to TDO without affecting the operation of the IC.

Figure 73. Standard JTAG Timing

SYSTEM INTERFACE PARAMETERS

Parameter	Symbol	Test Conditions	IDT72P51749 IDT72P51759 IDT72P51769		
			Min.	Max.	Units
DataOutput	tDO ${ }^{(1)}$		-	20	ns
Data Output Hold	tDOH ${ }^{(1)}$		0	-	ns
Data Input	tDS	$\begin{aligned} & \text { trise=3ns } \\ & \text { tfall=3ns } \end{aligned}$	1010	-	ns
	tD				

NOTE:

1. 50 pf loading on external output signals.

JTAG

AC ELECTRICAL CHARACTERISTICS
(VDD $=2.5 \mathrm{~V} \pm 5 \%$; Tcase $=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Test Conditions				
			Min.	Max.	Units	
JTAG Clock Input Period	tTCK	-	100	-	ns	
JTAG Clock HIGH	tTCKHIGH	-	40	-	ns	
JTAG Clock Low	tTCKLOW	-	40	-	ns	
JTAG Clock Rise Time	tTCKRISE	-	-	$5^{(1)}$	ns	
JTAG Clock Fall Time	tTCKFALL	-	-	$5^{(1)}$	ns	
JTAGReset	tRST	-	50	-	ns	
JTAG Reset Recovery	tRSR	-	50	-	ns	

NOTE:

1. Guaranteed by design.

ORDERING INFORMATION

NOTE:

1. Industrial temperature range product for the 6 ns is available as a standard device. All other speed grades available by special order.

[^0]: The $\overline{\text { SENO }}$ is the "programming complete" signal.
 2. SENI can be held LOW
 3. When Parallel Programming is complete the $\overline{\mathrm{SENO}}$ of the device will go LOW.
 . SCLK is not used and ($\overline{\text { SENO }}$ of the device is LOW),

[^1]: NOTE:

 1. This diagram is based on 3 devices connected in expansion configuration.
