

# Low Cost Quad Voltage Controlled Amplifier

SSM2164

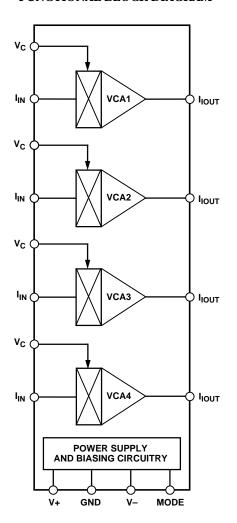
#### **FEATURES**

Four High Performance VCAs in a Single Package 0.02% THD
No External Trimming 120 dB Gain Range 0.07 dB Gain Matching (Unity Gain)
Class A or AB Operation

## **APPLICATIONS**

Remote, Automatic, or Computer Volume Controls
Automotive Volume/Balance/Faders
Audio Mixers
Compressor/Limiters/Compandors
Noise Reduction Systems
Automatic Gain Controls
Voltage Controlled Filters
Spatial Sound Processors
Effects Processors

### GENERAL DESCRIPTION


The SSM2164 contains four independent voltage controlled amplifiers (VCAs) in a single package. High performance (100 dB dynamic range, 0.02% THD) is provided at a very low cost-per-VCA, resulting in excellent value for cost sensitive gain control applications. Each VCA offers current input and output for maximum design flexibility, and a ground referenced –33 mV/dB control port.

All channels are closely matched to within 0.07 dB at unity gain, and 0.24 dB at 40 dB of attenuation. A 120 dB gain range is possible.

A single resistor tailors operation between full Class A and AB modes. The pinout allows upgrading of SSM2024 designs with minimal additional circuitry.

The SSM2164 will operate over a wide supply voltage range of  $\pm 4$  V to  $\pm 18$  V. Available in 16-pin P-DIP and SOIC packages, the device is guaranteed for operation over the extended industrial temperature range of  $-40^{\circ}$ C to  $+85^{\circ}$ C.

### FUNCTIONAL BLOCK DIAGRAM



# REV. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

# SSM2164—SPECIFICATIONS

| Parameter                             | Conditions                                    | SSM2164 |           |     | TT \$4- |
|---------------------------------------|-----------------------------------------------|---------|-----------|-----|---------|
|                                       |                                               | Min     | Тур       | Max | Units   |
| AUDIO SIGNAL PATH                     |                                               |         |           |     |         |
| Noise                                 | $V_{IN}$ = GND, 20 kHz Bandwidth              |         | -94       |     | dBu     |
| Headroom                              | Clip Point = 1% THD+N                         |         | 22        |     | dBu     |
| Total Harmonic Distortion             | 2nd and 3rd Harmonics Only                    |         |           |     |         |
|                                       | $A_V = 0$ dB, Class A                         |         | 0.02      | .1  | %       |
|                                       | $A_V = \pm 20 \text{ dB}, \text{ Class A}^1$  |         | 0.15      |     | %       |
|                                       | $A_{\rm V}$ = 0 dB, Class AB                  |         | 0.16      |     | %       |
|                                       | $A_V = \pm 20 \text{ dB}, \text{ Class AB}^1$ |         | 0.3       |     | %       |
| Channel Separation                    |                                               |         | -110      |     | dB      |
| Unity Gain Bandwidth                  | $C_F = 10 \text{ pF}$                         |         | 500       |     | kHz     |
| Slew Rate                             | $C_F = 10 \text{ pF}$                         |         | 0.7       |     | mA/μs   |
| Input Bias Current                    |                                               |         | $\pm 10$  |     | nA      |
| Output Offset Current                 | $V_{IN} = 0$                                  |         | $\pm 50$  |     | nA      |
| Output Compliance                     |                                               |         | $\pm 0.1$ |     | V       |
| CONTROL PORT                          |                                               |         |           |     |         |
| Input Impedance                       |                                               |         | 5         |     | kΩ      |
| Gain Constant                         | (Note 2)                                      |         | -33       |     | mV/dB   |
| Gain Constant Temperature Coefficient |                                               |         | -3300     |     | ppm/°C  |
| Control Feedthrough                   | 0 dB to -40 dB Gain Range <sup>3</sup>        |         | 1.5       | 8.5 | mV      |
| Gain Matching, Channel-to-Channel     | $A_v = 0 \text{ dB}$                          |         | 0.07      |     | dB      |
|                                       | $A_{v} = -40 \text{ dB}$                      |         | 0.24      |     | dB      |
| Maximum Attenuation                   | · ·                                           |         | -100      |     | dB      |
| Maximum Gain                          |                                               |         | +20       |     | dB      |
| POWER SUPPLIES                        |                                               |         |           |     |         |
| Supply Voltage Range                  |                                               | ±4      |           | ±18 | V       |
| Supply Current                        | Class AB                                      |         | 6         | 8   | mA      |
| Power Supply Rejection Ratio          | 60 Hz                                         |         | 90        |     | dB      |

#### NOTES

Specifications subject to change without notice.

# TYPICAL APPLICATION AND TEST CIRCUIT

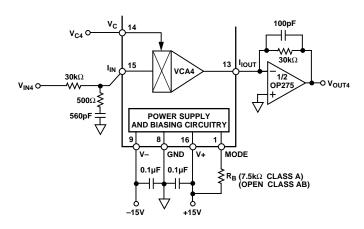



Figure 1.  $R_{IN}=R_{OUT}=30~k\Omega$ ,  $C_F=100~pF$ . Optional  $R_B=7.5~k\Omega$ , Biases Gain Core to Class A Operation. For Class AB, Omit  $R_B$ .

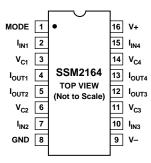
 $<sup>^{1}</sup>$ –10 dBu input @ 20 dB gain; +10 dBu input @ –20 dB gain.

<sup>&</sup>lt;sup>2</sup>After 60 seconds operation.

<sup>&</sup>lt;sup>3</sup>+25°C to +85°C.

# ABSOLUTE MAXIMUM RATINGS

| Supply Voltage                                   |
|--------------------------------------------------|
| Input, Output, Control Voltages V- to V+         |
| Output Short Circuit Duration to GND Indefinite  |
| Storage Temperature Range65°C to +150°C          |
| Operating Temperature Range40°C to +85°C         |
| Junction Temperature Range65°C to +150°C         |
| Lead Temperature Range (Soldering 60 sec) +300°C |


| Package Type                  | $\theta_{JA}^{\star}$ | $\theta_{JC}$ | Units |
|-------------------------------|-----------------------|---------------|-------|
| 16-Pin Plastic DIP (P Suffix) | 76                    | 33            | °C/W  |
| 16-Pin SOIC (S Suffix)        | 92                    | 27            | °C/W  |

<sup>\*</sup> $\theta_{JA}$  is specified for the worst case conditions; i.e.,  $\theta_{JA}$  is specified for device in socket for P-DIP packages,  $\theta_{JA}$  is specified for device soldered in circuit board for SOIC package.

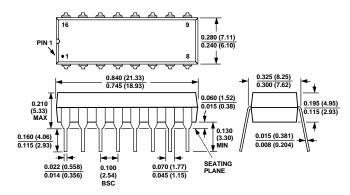
#### **ORDERING GUIDE**

| Model    | Temperature    | Package     | Package |
|----------|----------------|-------------|---------|
|          | Range          | Description | Options |
| SSM2164P | -40°C to +85°C | Plastic DIP | N-16    |
| SSM2164S | -40°C to +85°C | Narrow SOIC | R-16A   |

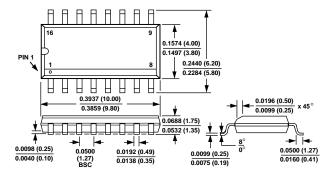
# PIN CONFIGURATION 16-Lead Epoxy DIP and SOIC



# CAUTION-


ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the SSM2164 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.




# **OUTLINE DIMENSIONS**

Dimensions shown in inches and (mm).

# 16-Pin Plastic DIP (N-16)



# 16-Pin Narrow SOIC (R-16A)

