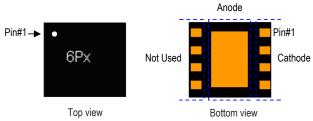
HSMP-386J

High Power RF PIN Diode

AVAGO

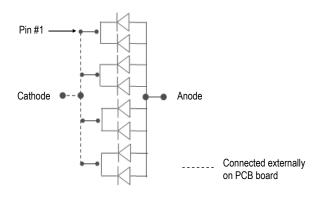

Data Sheet

Description

Avago Technologies' HSMP-386J is a High Power RF PIN Diode specifically design for high power handling and low distortion Transmit/Receive switching application. It is housed in QFN 2x2mm size package which is having good thermal resistance.

The unique with 8 dies in parallel configuration results to low IL performance and low series resistance. The HSMP-386J Power diode is built with match diode to ensure consistency in performance.

Package Marking & Orientation



Notes:

6P = Device Code

x = Month code indicates the month of manufacture

Circuit Diagram of HSMP-386J

Features

- High Power Surface Mount Package QFN 2x2
- Match Diode for Consistent Performance
- Low Bias Current Requirement
- Low Series Resistance
- Low Insertion Loss & High Isolation
- Better Thermal Conductivity for Higher Power Dissipation
- Low Failure in Time (FIT) Rate
- Lead-free Option Available
- MSL1 & Lead Free
- Tape & Reel Option Available

Specifications

- Low RS Switching typically 0.65Ω @ 100MHz., 50mA
- High Power Handling Up to 10W (40dBm) at 2GHz, 50mA

Application

 High Power Transmit / Receive Switch for Cellular Infrastructure and Two Way Radio

Table 1. Absolute Maximum Ratings [1] at $T_C = +25^{\circ}C$

Symbol	Parameter	Unit	Max Rating
I _F	Forward Current (1 μ s Pulse) per die $^{[2]}$	Amp	1
P _{IV}	Peak Inverse Voltage	V	100
Tj	Junction Temperature	°C	150
T _{stg}	Storage Temperature	°C	-60 to 150
θ_{jc}	Thermal Resistance [3]	°C/W	45
DC P _{diss}	DC Power Dissipation [4]	W	2.0

Notes

- 1. Operation in excess of any one of these conditions may result in permanent damage to the device.
- 2. Eight dice are connected in parallel for this device.
- 3. $TC = +25^{\circ}C$, where T_C is defined to be the temperature at the package pins where contact is made to the circuit board.
- 4. Maximum DC P_{diss} measured without RF input and maximum rating is base on device junction temperature.

 $P_{diss} = \frac{T (Max.Operating) - 25 ^{\circ}C}{Thermal Resistance}$

Table 2. Electrical Performance at $T_C = +25^{\circ}C$

	Minimum Breakdown Voltage V _{BR} (V)	Typical Forward Voltage V _f (V)	Maximum Series Resistance R _S (Ohm)	Maximum Total Capacitance C _T (pF)
	100	0.85	0.77	1.25
Test Conditions	V _R = V _{BR} Measure I _R ≤ 5uA	I _F = 50mA	I _F = 50 mA f = 100 MHz	$V_R = 50V$ f = 1MHz

Table 3. Typical Performance at $T_C = +25^{\circ}C$

	Series Resistance $R_S(\Omega)$	Carrier Lifetime (nS)	Reverse Recovery Time T _{rr} (nS)	Total Capacitance C _T (pF)
	0.65	260	130	0.75
Test Conditions	I _F = 50mA f = 100MHz	I _F = 50mA I _R = 100mA	$V_R = 5V$ $I_F = 50 \text{mA}$ 90% Recovery	$V_R = 50V$ f = 1MHz

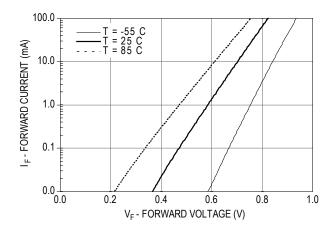


Figure 1. Forward Current vs. Forward Voltage

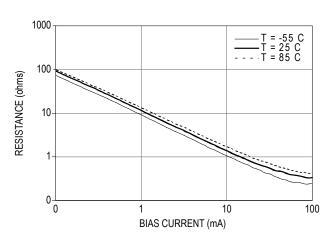
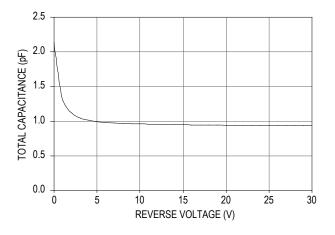
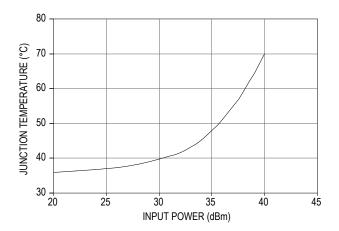
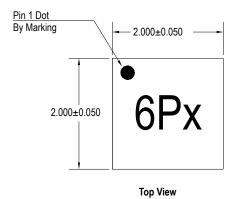
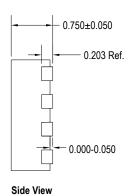
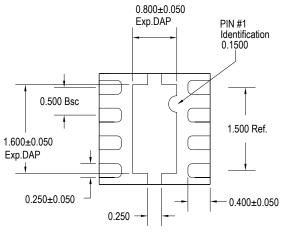



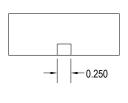
Figure 2. Typical RF Resistance vs. Forward Bias Current.

 ${\bf Figure\,3.\,RF\,Capacitance\,vs.\,Reverse\,Bias\,Voltage}$

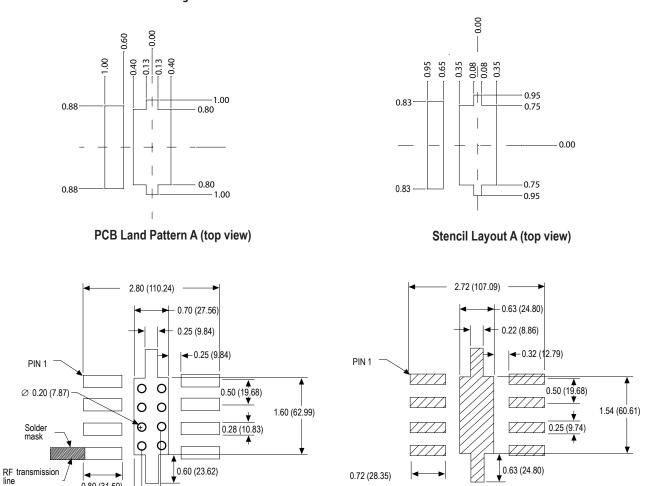




Figure 4. Input Power vs. Junction Temperature [1]


Notes:


- 1. Test conditions: f = 2.1GHz, $I_F = 50mA$
- 2. Typical values were derived using limited samples during initial product characterization and may not be representative of the overall distribution.

QFN 2x2 Package Dimension


Bottom View

Top View

Note:

- 1. All dimensions in millimeters.
- Dimensions are inclusive of plating.
 Dimensions are exclusive of mold flash and metal burr.

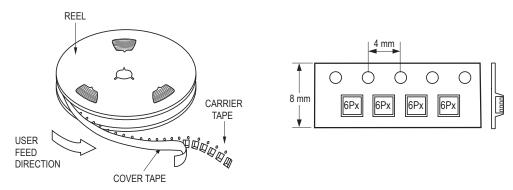
PCB Land Pattern and Stencil Design

PCB Land Pattern B (top view)

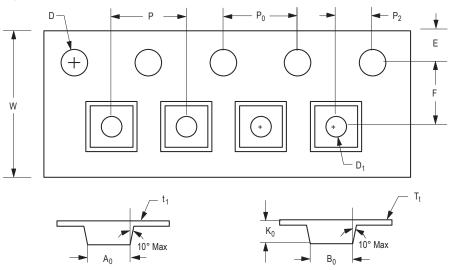
Stencil Layout B (top view)

Note:

1. All dimensions in millimeters (mils).


0.80 (31.50) 0.15 (5.91) ->
0.55 (21.65)

2. For PCB land pattern B and stencil layout B, external trace is required to connect all cathode pads as one single pad.


Ordering Information

Part Number	No. of Devices	Container
HSMP-386J-TR1G	3000	7" Reel
HSMP-386J-TR2G	10000	13" Reel
HSMP-386J-BLKG	100	antistatic bag

Device Orientation

Tape Dimensions

DESCRIPTION		SYMBOL	SIZE (mm)	SIZE (inches)
CAVITY	LENGTH WIDTH DEPTH PITCH BOTTOM HOLE DIAMETER	A ₀ B ₀ K ₀ P D ₁	2.30 ± 0.05 2.30 ± 0.05 1.00 ± 0.05 4.00 ± 0.10 1.00 + 0.25	0.091 ± 0.004 0.091 ± 0.004 0.039 ± 0.002 0.157 ± 0.004 0.039 + 0.002
PERFORATION	DIAMETER PITCH POSITION	D P ₀ E	1.50 ± 0.10 4.00 ± 0.10 1.75 ± 0.10	0.060 ± 0.004 0.157 ± 0.004 0.069 ± 0.004
CARRIER TAPE	WIDTH THICKNESS	W t ₁	8.00 + 0.30 8.00 ± 0.10 0.254 ± 0.02	0.315 ± 0.012 0.315 ± 0.004 0.010 ± 0.0008
COVER TAPE	WIDTH TAPE THICKNESS	C T _t	5.4 ± 0.10 0.062 ± 0.001	0.205 ± 0.004 0.0025 ± 0.0004
DISTANCE	CAVITY TO PERFORATION (WIDTH DIRECTION) CAVITY TO PERFORATION (LENGTH DIRECTION)	F P ₂	3.50 ± 0.05 2.00 ± 0.05	0.138 ± 0.002 0.079 ± 0.002

For product information and a complete list of distributors, please go to our web site: **www.avagotech.com**

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Limited in the United States and other countries. Data subject to change. Copyright © 2007 Avago Technologies Limited. All rights reserved. AV02-0819EN - December 25, 2007

