AMP01

FEATURES

Low Offset Voltage: $50 \mu \mathrm{~V}$ Max
Very Low Offset Voltage Drift: $0.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ Max
Low Noise: $0.12 \mu \mathrm{~V}$ p-p (0.1 Hz to 10 Hz)
Excellent Output Drive: $\pm 10 \mathrm{~V}$ at $\pm 50 \mathrm{~mA}$
Capacitive Load Stability: to $1 \mu \mathrm{~F}$
Gain Range: 0.1 to 10,000
Excellent Linearity: 16-Bit at $\mathbf{G}=1000$
High CMR: $125 \mathrm{~dB} \min (G=1000)$
Low Bias Current: 4 nA Max
May Be Configured as a Precision Op Amp
Output-Stage Thermal Shutdown
Available in Die Form

GENERAL DESCRIPTION

The AMP01 is a monolithic instrumentation amplifier designed for high-precision data acquisition and instrumentation applications. The design combines the conventional features of an instrumentation amplifier with a high current output stage. The output remains stable with high capacitance loads ($1 \mu \mathrm{~F}$), a unique ability for an instrumentation amplifier. Consequently, the AMP01 can amplify low level signals for transmission through long cables without requiring an output buffer. The output stage may be configured as a voltage or current generator.
Input offset voltage is very low ($20 \mu \mathrm{~V}$), which generally eliminates the external null potentiometer. Temperature changes have minimal effect on offset; $\mathrm{TCV}_{\text {IOs }}$ is typically $0.15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. Excellent low-frequency noise performance is achieved with a minimal compromise on input protection. Bias current is very low, less than 10 nA over the military temperature range. High common-mode rejection of $130 \mathrm{~dB}, 16$-bit linearity at a gain of 1000 , and 50 mA peak output current are achievable simultaneously. This combination takes the instrumentation amplifier one step further towards the ideal amplifier.
AC performance complements the superb dc specifications. The AMP01 slews at $4.5 \mathrm{~V} / \mu$ s into capacitive loads of up to 15 nF , settles in 50μ s to 0.01% at a gain of 1000 , and boasts a healthy 26 MHz gain-bandwidth product. These features make the AMP01 ideal for high speed data acquisition systems.
Gain is set by the ratio of two external resistors over a range of 0.1 to 10,000 . A very low gain temperature coefficient of $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ is achievable over the whole gain range. Output voltage swing is guaranteed with three load resistances; 50Ω, 500Ω, and $2 \mathrm{k} \Omega$. Loaded with 500Ω, the output delivers $\pm 13.0 \mathrm{~V}$ minimum. A thermal shutdown circuit prevents destruction of the output transistors during overload conditions.
The AMP01 can also be configured as a high performance operational amplifier. In many applications, the AMP01 can be used in place of op amp/power-buffer combinations.

REV. D
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

PIN CONFIGURATIONS
18-Lead Cerdip

AMP01 BTC/883
28-Terminal LCC

20-Lead SOIC

*MAKE NO ELECTRICAL CONNECTION
*Protected under U.S. Patent Numbers 4,471,321 and 4,503,381.

AMPO1-SPECIFICATIONS

NOTES

${ }^{1} \mathrm{~V}_{\text {IOS }}$ and $\mathrm{V}_{\text {OOS }}$ nulling has minimal affect on $\mathrm{TCV}_{\text {IOS }}$ and $\mathrm{TCV}_{\text {OOS }}$ respectively.
${ }^{2}$ Refer to section on common-mode rejection.
Specifications subject to change without notice.

NOTES
${ }^{1}$ Sample tested.
${ }^{2} \mathrm{~V}_{\text {IOS }}$ and $\mathrm{V}_{\text {Oos }}$ nulling has minimal affect on $\mathrm{TCV}_{\text {IOS }}$ and $\mathrm{TCV}_{\text {OOS }}$, respectively.
${ }^{3}$ Refer to section on common-mode rejection.
Specifications subject to change without notice.

ELECTRICAL CHARACTERISTICS
$\left(@ V_{S}= \pm 15 \mathrm{~V}, R_{S}=10 \mathrm{k} \Omega, R_{L}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

NOTES

${ }^{1}$ Guaranteed by design.
${ }^{2}$ Gain tempco does not include the effects of gain and scale resistor tempco match.
${ }^{3}-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ for A / B grades, $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ for E / F grades, $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ for G grades.
Specifications subject to change without notice.

ELECTRICAL CHARACTERISTICS
(@ $V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted)

Parameter	Symbol	Conditions	AMP01A/E			AMP01B/F/G			Units
			Min	Typ	Max	Min	Typ	Max	
SENSE INPUT Input Resistance Input Current Voltage Range	$\begin{aligned} & \mathrm{R}_{\mathrm{IN}} \\ & \mathrm{I}_{\mathrm{IN}} \end{aligned}$	Referenced to V- (Note 1)	$\begin{aligned} & 35 \\ & -10.5 \end{aligned}$	$\begin{aligned} & 50 \\ & 280 \end{aligned}$	65 $+15$	$\begin{aligned} & 35 \\ & -10.5 \end{aligned}$	$\begin{aligned} & 50 \\ & 280 \end{aligned}$	$\begin{aligned} & 65 \\ & +15 \end{aligned}$	$\begin{aligned} & \mathrm{k} \Omega \\ & \mu \mathrm{~A} \\ & \mathrm{~V} \end{aligned}$
REFERENCE INPUT Input Resistance Input Current Voltage Range Gain to Output	$\begin{aligned} & \mathrm{R}_{\mathrm{IN}} \\ & \mathrm{I}_{\mathrm{IN}} \end{aligned}$	Referenced to V- (Note 1)	35 -10.5	$\begin{aligned} & 50 \\ & 280 \\ & 1 \end{aligned}$	$\begin{aligned} & 65 \\ & +15 \end{aligned}$	35 -10.5	$\begin{aligned} & 50 \\ & 280 \\ & 1 \end{aligned}$	65 $+15$	$\begin{aligned} & \mathrm{k} \Omega \\ & \mu \mathrm{~A} \\ & \mathrm{~V} \\ & \mathrm{~V} / \mathrm{V} \end{aligned}$
POWER SUPPLY -25° Supply Voltage Range Quiescent Current	$\begin{aligned} & =+85^{\circ} \mathrm{C} \text { fo } \\ & \mathrm{V}_{\mathrm{S}} \\ & \mathrm{~V}_{\mathrm{S}} \\ & \mathrm{I}_{\mathrm{Q}} \\ & \mathrm{I}_{\mathrm{Q}} \\ & \hline \end{aligned}$	E/F Grades, $-55^{\circ} \mathrm{C}$ +V linked to $+\mathrm{V}_{\mathrm{OP}}$ -V linked to $-\mathrm{V}_{\mathrm{OP}}$ +V linked to $+\mathrm{V}_{\mathrm{OP}}$ -V linked to $-\mathrm{V}_{\mathrm{OP}}$	$\begin{aligned} & +125^{\circ} \mathrm{C} \\ & \pm 4.5 \\ & \pm 4.5 \end{aligned}$	$\begin{gathered} \text { for A } \\ \\ 3.0 \\ 3.4 \end{gathered}$	$\begin{aligned} & \text { Grades } \\ & \pm 18 \\ & \pm 18 \\ & 4.8 \\ & 4.8 \end{aligned}$	$\begin{aligned} & \pm 4.5 \\ & \pm 4.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.4 \end{aligned}$	$\begin{aligned} & \pm 18 \\ & \pm 18 \\ & 4.8 \\ & 4.8 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$

NOTE
${ }^{1}$ Guaranteed by design.
Specifications subject to change without notice.
ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
AMP01AX	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	18 -Lead Cerdip	$\mathrm{Q}-18$
AMP01AX/883C	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	18-Lead Cerdip	$\mathrm{Q}-18$
AMP01BTC/883C	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28-Terminal LCC	$\mathrm{E}-28 \mathrm{~A}$
AMP01BX	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	18 -Lead Cerdip	$\mathrm{Q}-18$
AMP01BX/883C	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	18-Lead Cerdip	$\mathrm{Q}-18$
AMP01EX	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	18 -Lead Cerdip	$\mathrm{Q}-18$
AMP01FX	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	18 -Lead Cerdip	$\mathrm{Q}-18$
AMP01GBC		Die	
AMP01GS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20-Lead SOIC	$\mathrm{R}-20$
AMP01GS-REEL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$13 "$ Tape and Reel	$\mathrm{R}-20$
AMP01NBC		Die	
$5962-8863001 \mathrm{VA} \star$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	18 -Lead Cerdip	$\mathrm{Q}-18$
$5962-88630023 \mathrm{~A}^{\star}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 -Terminal LCC	$\mathrm{E}-28 \mathrm{~A}$
$5962-8863002 \mathrm{VA}^{\star}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	18 -Lead Cerdip	$\mathrm{Q}-18$

*Standard military drawing available.

DICE CHARACTERISTICS

Die Size 0.111×0.149 inch, 16,539 sq. mils $(2.82 \times 3.78 \mathrm{~mm}, 10.67$ sq. mm $)$

1. R_{G}	10. V^{-}(OUTPUT)
2. R_{G}	11. V_{-}
3. - INPUT	12. V_{+}
4. $\mathrm{V}_{\mathrm{OOS}}$ NULL	13. V_{+}(OUTPUT)
5. $\mathrm{V}_{\mathrm{OOS}}$ NULL	14. R_{S}
6. TEST PIN	15. R_{S}
7. SENSE	16. $\mathrm{V}_{\text {IOS }}$ NULL
8. REFERENCE	17. $\mathrm{V}_{\text {IOS }}$ NULL
9. OUTPUT	18. +INPUT
*MAKE NO ELECTRICAL CONNECTION	

WAFER TEST LIMITS
$\left(@ V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Parameter	Symbol	Conditions	AMP01NBC Limit	AMP01GBC Limit	Units
Input Offset Voltage Output Offset Voltage Offset Referred to Input vs. Positive Supply	$\begin{aligned} & \mathrm{V}_{\mathrm{IOS}} \\ & \mathrm{~V}_{\mathrm{OOS}} \\ & \text { PSR } \end{aligned}$		60	120	$\mu \mathrm{V}$ max
			4	8	mV max
		$\begin{aligned} & \mathrm{V}+=+5 \mathrm{~V} \text { to }+15 \mathrm{~V} \\ & \mathrm{G}=1000 \end{aligned}$	120	110	dB min $d B$ min
		$\mathrm{G}=100$	110	100	dB min
		$\mathrm{G}=10$	95	90	dB min
		$\mathrm{G}=1$	75	70	dB min
Offset Referred to Input vs. Negative Supply	PSR	$\mathrm{V}-=-5 \mathrm{~V}$ to -15 V			dB min
		$\mathrm{G}=1000$	105	105	dB min
		$\mathrm{G}=100$	90	90	dB min
		$\mathrm{G}=10$	70	70	dB min
		$\mathrm{G}=1$	50	50	dB min
Input Bias Current Input Offset Current Input Voltage Range Common Mode Rejection	I_{B} I_{OS} IVR CMR		4	8	$n A \max$
			1	3	$n A \max$
		Guaranteed by CMR Tests	± 10	± 10	V min
		$\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$			dB min
		$\mathrm{G}=1000$	125	115	dB min
		$\mathrm{G}=100$	120	110	dB min
		$\mathrm{G}=10$	100	95	dB min
		$\mathrm{G}=1$	85	75	dB min
Gain Equation Accuracy		$G=\frac{20 \times R_{S}}{R_{G}}$	0.6	0.8	\% max
Output Voltage Swing	$\mathrm{V}_{\text {Out }}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	± 13	± 13	V min
	$\mathrm{V}_{\text {Out }}$	$\mathrm{R}_{\mathrm{L}}=500 \Omega$	± 13	± 13	V min
	$\mathrm{V}_{\text {OUT }}$	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	± 2.5	± 2.5	V min
Output Current Limit		Output to Ground Short	± 60	± 60	mA min
Output Current Limit		Output to Ground Short	± 120	± 120	mA max
Quiescent Current	I_{Q}	+V Linked to $+\mathrm{V}_{\text {OP }}$	4.8	4.8	$\mathrm{mA} \max$
		-V Linked to $-\mathrm{V}_{\mathrm{OP}}$	4.8	4.8	mA max

NOTE

Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing.

Figure 1. Simplified Schematic

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AMP01 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

ELECTRICAL CHARACTERISTICS $\left(@ V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{S}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter \& Symbol \& Conditions \& AMP01NBC Typical \& AMP01GBC Typical \& Units

\hline Input Offset Voltage Drift \& TCV ${ }_{\text {IOS }}$ \& \multirow[b]{4}{*}{$\mathrm{R}_{\mathrm{G}}=\infty$

$\mathrm{G}=1000$} \& 0.15 \& 0.30 \& $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

\hline Output Offset Voltage Drift \& TCV ${ }_{\text {oos }}$ \& \& 20 \& 50 \& $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

\hline Input Bias Current Drift \& $\mathrm{TCI}_{\text {B }}$ \& \& 40 \& 50 \& $\mathrm{pA} /{ }^{\circ} \mathrm{C}$

\hline Input Offset Current Drift \& \multirow[t]{2}{*}{$$
\mathrm{TCI}_{\mathrm{OS}}
$$} \& \& 3 \& 5 \& $\mathrm{pA} /{ }^{\circ} \mathrm{C}$

\hline Nonlinearity \& \& \& \multirow[t]{2}{*}{0.0007} \& \multirow[t]{2}{*}{0.0007} \& \multirow[t]{2}{*}{\%}

\hline Voltage Noise Density \& \multirow[t]{2}{*}{e_{n}} \& \multirow[t]{2}{*}{$$
\begin{aligned}
\mathrm{G} & =1000 \\
\mathrm{f}_{\mathrm{O}} & =1 \mathrm{kHz}
\end{aligned}
$$} \& \& \&

\hline \& \& \& 5 \& 5 \& \multirow[t]{2}{*}{$\mathrm{nV} / \sqrt{\mathrm{Hz}}$}

\hline \multirow[t]{2}{*}{Current Noise Density} \& \multirow[t]{2}{*}{i_{n}} \& \multirow[t]{2}{*}{$$
\begin{aligned}
\mathrm{G} & =1000 \\
\mathrm{f}_{\mathrm{O}} & =1 \mathrm{kHz}
\end{aligned}
$$} \& \multirow[b]{2}{*}{0.15} \& \multirow[b]{2}{*}{0.15} \&

\hline \& \& \& \& \& \multirow[t]{2}{*}{$\mathrm{pA} / \sqrt{\mathrm{Hz}}$}

\hline \multirow[t]{2}{*}{Voltage Noise} \& \multirow[t]{2}{*}{$\mathrm{e}_{\mathrm{n}} \mathrm{p}-\mathrm{p}$} \& \multirow[t]{2}{*}{$\mathrm{G}=1000$
0.1 Hz to 10 Hz} \& \multirow[t]{2}{*}{0.12} \& \multirow[t]{2}{*}{0.12} \&

\hline \& \& \& \& \& \multirow[t]{2}{*}{$\mu \mathrm{V}$ p-p
pA p-p}

\hline Current Noise \& $\mathrm{i}_{\mathrm{n}} \mathrm{p}-\mathrm{p}$ \& $$
\begin{aligned}
& G=1000 \\
& 0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz}
\end{aligned}
$$ \& 2 \& 2 \&

\hline Small-Signal Bandwidth (-3 dB) \& BW \& $\mathrm{G}=1000$ \& 26 \& 26 \& kHz

\hline Slew Rate \& SR \& $\mathrm{G}=10$ \& 4.5 \& 4.5 \& V/ $/ \mathrm{s}$

\hline Settling Time \& $\mathrm{t}_{\text {S }}$ \& $$
\begin{aligned}
& \text { To } 0.01 \%, 20 \text { V Step } \\
& G=1000
\end{aligned}
$$ \& 50 \& 50 \& $\mu \mathrm{s}$

\hline
\end{tabular}

NOTE

Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing.

OUTLINE DIMENSIONS

Dimensions shown in inches and（mm）．

28－Terminal Ceramic Leadless Chip Carrier （E－28A）

20－Lead SOIC
（R－20）

