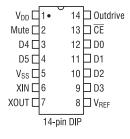


Features

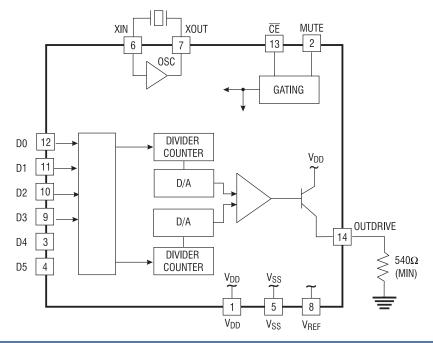
- · Generates standard CCITT R1 MF tones
- Digital input control
- Linear (analog) output
- Power output capable of driving standard line
- 14-pin DIP
- Single 5-Volt supply
- Inexpensive 3.58 MHz time base

Applications

- Telephone systems
- Test equipment


Description

The M-993 is a monolithic CMOS integrated circuit designed to generate multifrequency (MF) tone pairs for use in trunk signaling. The tones generated conform to CCITT R1 signal recommendations and to AT&T MF standards. The M-993 permits design engineers to implement a highly accurate MF sender with a minimum of space, power, and added components. The accuracy of the tone frequencies is assured through use of an easily obtained 3.58 MHz color burst crystal or an external 3.58 MHz clock source.


Ordering Information

Part #	Description
M-993	14-pin plastic DIP

Pin Diagram

Block Diagram

Absolute Maximum Ratings

Storage Temperature	-55 to 125°C
Operating Ambient Temperature	-25 to 70°C
V _{DD}	7.0V
Any Input Voltage	V_{SS} - 0.6 to V_{DD} + 0.6V

Note:

Absolute Maximum Ratings are stress ratings. Stresses in excess of these ratings can cause permanent damage to the device. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this data sheet is not implied. Exposure of the device to the absolute maximum ratings for an extended period may degrade the device and effect its reliability.

Specifications

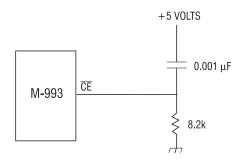
	Parameter	Min	Тур	Max	Units	Notes			
Power Supply	V _{DD}	4.75	-	5.25	V	1			
and Reference	Current Drain, IDD	-	2.0/4.0	-	mA	8			
	V _{REF} PIN:								
	Voltage	48% of V _{DD}	-	52% of V _{DD}	%	-			
	Internal Resistance from V_{REF} to V_{DD} , V_{SS}	3.25	-	6.75	kΩ	-			
Oscillator	Frequency Deviation	-0.01	-	+0.01	%	7			
	External CLock: (X _{OUT} open)								
	V _{IL}	0	-	0.2	V	-			
	V _{IH}	V _{DD} - 0.2	-	V _{DD}	V	-			
	Duty Cycle	40	-	60	%	-			
	X _{IN} , X _{OUT} Loading:								
	Capacitance	-	-	10	pF	9			
	Resistance	20	-	-	$M\Omega$	-			
Tone Output	Frequency Deviation	-1.5	-	1.5	%	-			
	Level	110	-	180	mV	2			
	Distorting Components	-35	-	-	dB	2, 3			
	Idle	-	-	-60	dBm	4			
	OUTDRIVE Envelope Rise Time	-	-	4	ms	5			
Control	DX, CE Pins:								
	V _{IL}	-	-	0.5	V	6			
	V _{IH}	2.5	-	-	V	-			
	Mute Pins:								
	VOL (ISINK = -100 μA)	-	-	1.5	V	-			
	VOH (ISOURCE = 100 μA)	V _{DD} - 1.5	-	-	V	-			
Timing	Data Setup (t _{DSRT})	200	-	-	ns	10			
	Data Hold (t _{DH})	10	-	-	ns	-			
	Chip Enable Fall (t _{Pl})	-	-	90	ns	-			
	Tone On Delay (t _{TO})	5	-	-	ms	-			
	Tone Off Delay (t _{TD})	5	-	-	ms	-			
	Mute Delay from Outdrive (t _{MO})	-	-	200	ns	-			

Unless otherwise noted, V_{DD} - V_{SS} = 5 VDC, Ta - 25° C

- All DC voltages are referenced to V_{SS}.
- Vrms per tone, 540W load.
 Any one frequency relative to the lowest level output tone (f<4000 Hz).
- 5. To 90% maximum amplitude.

- 6. For all supply voltages in the operating range.
 7. At XOUT pin as compared to 3.579545 MHz.
 8. OUTDRIVE with load >5 KW/OUTDRIVE with 540W load.
- Crystal oscillator active.
 Measured 90% to 10%.

^{1.} Exceeding these ratings may permanently damage the M-993.

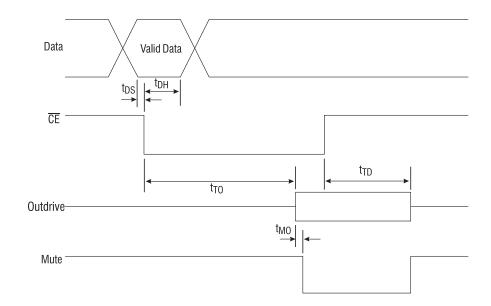

Pin Function

Pin	Function
CE	Latches data and enables output (active low
	input).
D0 - D3	Data input pins. (See Data/Tone Selection.)
D4-D5	Leave open.
MUTE	Output indicates that a signal is being
	generated at OUTDRIVE.
OUTDRIVE	Linear buffered tone output.
V_{DD}	Most positive power supply input pin.
V_{REF}	Internally generated mid-power supply
	voltage (output).
V_{SS}	Most negative power supply input pin.
X _{IN}	Crystal oscillator or digital clock input.
X _{OUT}	Crystal oscillator output.

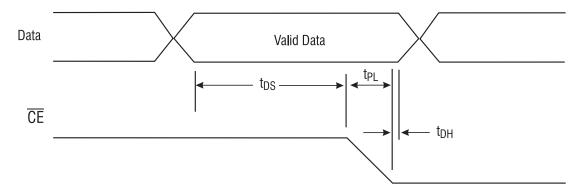
Data/Tone Selection

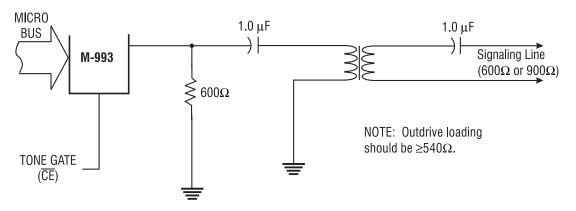
D3	D2	D1	D0	Frequency (Hz)		Use
				1	2	
0	0	0	0	1100	1700	Key Pulse (KP)
0	0	0	1	700	900	Digit 1
0	0	1	0	700	1100	Digit 2
0	0	1	1	900	1100	Digit 3
0	1	0	0	700	1300	Digit 4
0	1	0	1	900	1300	Digit 5
0	1	1	0	1100	1300	Digit 6
0	1	1	1	700	1500	Digit 7
1	0	0	0	900	1500	Digit 8
1	0	0	1	1100	1500	Digit 9
1	0	1	0	1300	1500	Digit 0
1	0	1	1	1500	1700	ST
1	1	0	0	900	1700	ST1
1	1	0	1	1300	1700	ST2
1	1	1	0	700	1700	ST3

Power-On Reset Circuit

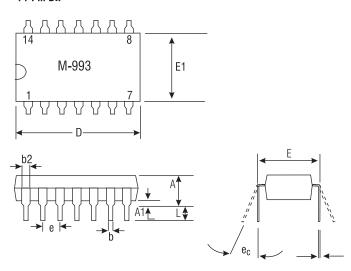


A typical control sequence for the M-993 is: (1) set data lines Selection for data settings for a particular tone pair output).to desired frequency selection, (2) wait for data lines to settle, (3) drive the chip enable (CE) low, (4) maintain CE low for desired tone duration (Note: data lines may be changed after data hold time), and (5) return CE to a logic high.


In a bus-oriented system, noise on the data lines may propagate through the device and appear at the output. To safeguard against this, use an external latch to clock the data into the device. In addition, it is good practice to bypass the $V_{\rm REF}$ pin to ground with a small capacitor (~0.01mF) to reduce power supply noise. The designer should be aware of device timing requirements and design accordingly. Beware of hardwiring the data input pins for dedicated tone generation. An RC network like that shown in Power-On Reset Circuit should be used to momentarily reset the device immediately following a power-up to ensure reliable operation.


Timing Diagram

Expanded Timing Diagram


Typical Application

Mechanical Dimensions

14-Pin DIP

	Tolerances						
	Inc	hes	Metric (mm)				
	Min	Max	Min	Max			
Α	-	.210	-	5.33			
A1	.015	-	.38	-			
b	.014	.022	.36	.56			
b2	.045	.070	1.1	1.8			
С	.008	.014	.20	.36			
D	.735	.775	18.7	19.7			
Е	.300	.325	7.6	8.3			
E1	.240	.280	6.1	7.1			
е	.100	BSC	2.54 BSC				
ес	0°	15°	0°	15°			
L	.115	.150	2.9	4.1			

Drawing not to scale.

Does not reflect actual part marking.

Dimensions mm (inches)

CLARE LOCATIONS

Clare Headquarters 78 Cherry Hill Drive Beverly, MA 01915 Tel: 1-978-524-6700 Fax: 1-978-524-4900

Toll Free: 1-800-27-CLARE

Clare Switch Division 4315 N. Earth City Expressway Earth City, MO 63045

Tel: 1-314-770-1832 Fax: 1-314-770-1812

Clare Micronix Division 145 Columbia Aliso Viejo, CA 92656-1490 Tel: 1-949-831-4622

Fax: 1-949-831-4628

SALES OFFICES

AMERICAS

Americas Headquarters

Clare 78 Cherry Hill Drive

Beverly, MA 01915 Tel: 1-978-524-6700 Fax: 1-978-524-4900 Toll Free: 1-800-27-CLARE

Eastern Region

Clare 603 Apache Court Mahwah, NJ 07430 Tel: 1-201-236-0101

Fax: 1-201-236-8685 Toll Free: 1-800-27-CLARE

Central Region

Clare Canada Ltd. 3425 Harvester Road, Suite 202 Burlington, Ontario L7N 3N1

Tel: 1-905-333-9066 Fax: 1-905-333-1824

Western Region

Clare

1852 West 11th Street, #348 Tracy, CA 95376

Tel: 1-209-832-4367 Fax: 1-209-832-4732 Toll Free: 1-800-27-CLARE

Canada

Clare Canada Ltd. 3425 Harvester Road, Suite 202 Burlington, Ontario L7N 3N1

Tel: 1-905-333-9066 Fax: 1-905-333-1824

EUROPE

European Headquarters

CP Clare nv Bampslaan 17 B-3500 Hasselt (Belgium) Tel: 32-11-300868 Fax: 32-11-300890

France

Clare France Sales Lead Rep 99 route de Versailles 91160 Champlan France

Tel: 33 1 69 79 93 50 Fax: 33 1 69 79 93 59

Germany

Clare Germany Sales ActiveComp Electronic GmbH Mitterstrasse 12 85077 Manching Germany

Tel: 49 8459 3214 10 Fax: 49 8459 3214 29

Italy

C.L.A.R.E.s.a.s. Via C. Colombo 10/A I-20066 Melzo (Milano) Tel: 39-02-95737160 Fax: 39-02-95738829

Sweden

Clare Sales Comptronic AB Box 167 S-16329 Spånga Tel: 46-862-10370 Fax: 46-862-10371

United Kingdom

Clare UK Sales Marco Polo House Cook Way Bindon Road Taunton

UK-Somerset TA2 6BG Tel: 44-1-823 352541 Fax: 44-1-823 352797

ASIA/PACIFIC

Asian Headquarters

Clare Room N1016, Chia-Hsin, Bldg II, 10F, No. 96, Sec. 2 Chung Shan North Road Taipei, Taiwan R.O.C.

Tel: 886-2-2523-6368 Fax: 886-2-2523-6369

http://www.clare.com

Clare, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. Neither circuit patent licenses nor indemnity are expressed or implied. Except as set forth in Clare's Standard Terms and Conditions of Sale, Clare, Inc. assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right.

The products described in this document are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or where malfunction of Clare's product may result in direct physical harm, injury, or death to a person or severe property or environmental damage. Clare, Inc. reserves the right to discontinue or make changes to its products at any time without notice.

Specification: DS-M-993-R1 ©Copyright 2001, Clare, Inc. All rights reserved. Printed in USA.