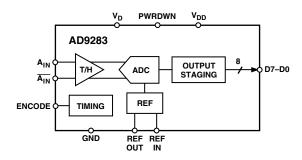


# 8-Bit, 50 MSPS/80 MSPS/100 MSPS 3 V A/D Converter


AD9283

#### **FEATURES**

8-Bit, 50, 80, and 100 MSPS ADC Low Power: 90 mW at 100 MSPS On-Chip Reference and Track/Hold 475 MHz Analog Bandwidth SNR = 46.5 dB @ 41 MHz at 100 MSPS 1 V p-p Analog Input Range Single 3.0 V Supply Operation (2.7 V-3.6 V) Power-Down Mode: 4.2 mW

APPLICATIONS
Battery Powered Instruments
Hand-Held Scopemeters
Low Cost Digital Oscilloscopes

### **FUNCTIONAL BLOCK DIAGRAM**



### **GENERAL DESCRIPTION**

The AD9283 is an 8-bit monolithic sampling analog-to-digital converter with an on-chip track-and-hold circuit and is optimized for low cost, low power, small size and ease of use. The product operates at a 100 MSPS conversion rate, with outstanding dynamic performance over its full operating range.

The ADC requires only a single 3.0 V (2.7 V to 3.6 V) power supply and an encode clock for full performance operation. No external reference or driver components are required for many applications. The digital outputs are TTL/CMOS compatible and a separate output power supply pin supports interfacing with 3.3 V or 2.5 V logic.

The encoder input is TTL/CMOS compatible. A power-down function may be exercised to bring total consumption to 4.2 mW. In power-down mode, the digital outputs are driven to a high impedance state.

Fabricated on an advanced CMOS process, the AD9283 is available in a 20-lead surface mount plastic package (SSOP) specified over the industrial temperature range (-40°C to +85°C).

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700 www.analog.com
Fax: 781/326-8703 © Analog Devices, Inc., 2001

# $\textbf{AD9283--SPECIFICATIONS} \ (\textbf{V}_{\text{DD}} = 3.0 \ \textbf{V}, \ \textbf{V}_{\text{D}} = 3.0 \ \textbf{V}; \ \text{single-ended input; external reference, unless otherwise noted})$

| _                                         |      | Test  | AD9283BRS-100 |            |       | AD9283BRS-80 |            |       | AD9283BRS-50 |            |       |        |
|-------------------------------------------|------|-------|---------------|------------|-------|--------------|------------|-------|--------------|------------|-------|--------|
| Parameter                                 | Temp | Level | Min           | Тур        | Max   | Min          | Тур        | Max   | Min          | Тур        | Max   | Unit   |
| RESOLUTION                                |      |       |               | 8          |       |              | 8          |       |              | 8          |       | Bits   |
| DC ACCURACY                               |      |       |               |            |       |              |            |       |              |            |       |        |
| Differential Nonlinearity                 | 25°C | I     |               | $\pm 0.5$  | +1.25 |              | $\pm 0.5$  | +1.25 |              | $\pm 0.5$  | +1.25 | LSB    |
|                                           | Full | VI    |               |            | +1.50 |              |            | +1.50 |              |            | +1.50 | LSB    |
| Integral Nonlinearity                     | 25°C | I     | -1.25         | $\pm 0.75$ | +1.25 | -1.25        | $\pm 0.75$ | +1.25 | -1.25        | $\pm 0.75$ | +1.25 | LSB    |
|                                           | Full | VI    |               |            | +2.25 |              |            | +1.50 |              |            | +1.50 | LSB    |
| No Missing Codes                          | Full | VI    | Guar          | anteed     |       | Gua          | ranteed    |       | Gua          | ranteed    |       |        |
| Gain Error <sup>1</sup>                   | 25°C | I     | -6            | $\pm 2.5$  | +6    | -6           | $\pm 2.5$  | +6    | -6           | $\pm 2.5$  | +6    | % FS   |
|                                           | Full | VI    | -8            |            | +8    | -8           |            | +8    | -8           |            | +8    | % FS   |
| Gain Tempco <sup>1</sup>                  | Full | VI    |               | 80         |       |              | 80         |       |              | 80         |       | ppm/°C |
| ANALOG INPUT                              |      |       |               |            |       |              |            |       |              |            |       |        |
| Input Voltage Range                       |      |       |               |            |       |              |            |       |              |            |       |        |
| (With Respect to A <sub>IN</sub> )        | Full | V     |               | ±512       |       |              | ±512       |       |              | ±512       |       | mV p-p |
| Common-Mode Voltage                       | Full | V     |               | ±200       |       |              | ±200       |       |              | ±200       |       | mV     |
| Input Offset Voltage                      | 25°C | I     | -35           | ±10        | +35   | -35          | ±10        | +35   | -35          | ±10        | +35   | mV     |
| •                                         | Full | VI    |               | $\pm 40$   |       |              | $\pm 40$   |       |              | $\pm 40$   |       | mV     |
| Reference Voltage                         | Full | VI    | 1.2           | 1.25       | 1.3   | 1.2          | 1.25       | 1.3   | 1.2          | 1.25       | 1.3   | V      |
| Reference Tempco                          | Full | VI    |               | ±130       |       |              | ±130       |       |              | ±130       |       | ppm/°C |
| Input Resistance                          | 25°C | I     | 7             | 10         | 13    | 7            | 10         | 13    | 7            | 10         | 13    | kΩ     |
|                                           | Full | VI    | 5             |            | 16    | 5            |            | 16    | 5            |            | 16    | kΩ     |
| Input Capacitance                         | 25°C | V     |               | 2          |       |              | 2          |       | -            | 2          |       | pF     |
|                                           | Full | VI    |               | _          |       |              | _          |       |              | _          |       | μA     |
| Analog Bandwidth, Full Power              | 25°C | V     |               | 475        |       |              | 475        |       |              | 475        |       | MHz    |
| SWITCHING PERFORMANCE                     |      |       |               |            |       |              |            |       |              |            |       |        |
| Maximum Conversion Rate                   | Full | VI    | 100           |            |       | 80           |            |       | 50           |            |       | MSPS   |
| Minimum Conversion Rate                   | 25°C | IV    | ***           |            | 1     |              |            | 1     |              |            | 1     | MSPS   |
| Encode Pulsewidth High (t <sub>EH</sub> ) | 25°C | IV    | 4.3           |            | 1000  | 5.0          |            | 1000  | 8.0          |            | 1000  | ns     |
| Encode Pulsewidth Low (t <sub>EL</sub> )  | 25°C | IV    | 4.3           |            | 1000  | 5.0          |            | 1000  | 8.0          |            | 1000  | ns     |
| Aperture Delay (t <sub>A</sub> )          | 25°C | V     | 1.5           | 0          | 1000  | 3.0          | 0          | 1000  | 0.0          | 0          | 1000  | ns     |
| Aperture Uncertainty (Jitter)             | 25°C | v     |               | 5          |       |              | 5          |       |              | 5          |       | ps rms |
| Output Valid Time $(t_V)^2$               | Full | VI    | 2.0           | 3.0        |       | 2.0          | 3.0        |       | 2.0          | 3.0        |       | ns     |
| Output Propagation Delay $(t_{PD})^2$     | Full | VI    | 2.0           | 4.5        | 7.0   | 2.0          | 4.5        | 7.0   | 2.0          | 4.5        | 7.0   | ns     |
| DIGITAL INPUTS                            |      |       |               |            |       |              |            |       |              |            |       | 1      |
| Logic "1" Voltage                         | Full | VI    | 2.0           |            |       | 2.0          |            |       | 2.0          |            |       | v      |
| Logic "0" Voltage                         | Full | VI    | 2.0           |            | 0.8   | 2.0          |            | 0.8   | 2.0          | 0.8        |       | V      |
| Logic "1" Current                         | Full | VI    |               |            | ±1    |              |            | ±1    |              | 0.0        | ±1    | μΑ     |
| Logic "0" Current                         | Full | VI    |               |            | ±1    |              |            | ±1    |              |            | ±1    | μΑ     |
| Input Capacitance                         | 25°C | V     |               | 2.0        | ± 1   |              | 2.0        | ± 1   |              | 2.0        | ± 1   | pF     |
|                                           |      | •     |               |            |       |              |            |       |              |            |       | P      |
| DIGITAL OUTPUTS                           | F 11 | T 77  | 2.05          |            |       | 2.05         |            |       | 2.05         |            |       | .,     |
| Logic "1" Voltage                         | Full | VI    | 2.95          |            |       | 2.95         |            |       | 2.95         |            |       | V      |
| Logic "0" Voltage                         | Full | VI    | 0.00          | D: 0       | 0.05  | 0.00         | D: 0       | 0.05  | 0.00         | D: 0       | 0.05  | V      |
| Output Coding                             |      |       | Offset        | Binary C   | ode   | Offset       | Binary C   | ode   | Offset       | Binary C   | ode   |        |
| POWER SUPPLY                              |      |       |               |            |       |              |            |       |              |            |       |        |
| Power Dissipation <sup>3, 4</sup>         | Full | VI    |               | 90         | 120   |              | 90         | 115   |              | 80         | 100   | mW     |
| Power-Down Dissipation                    | Full | VI    |               | 4.2        | 7     |              | 4.2        | 7     |              | 4.2        | 7     | mW     |
| Power Supply Rejection Ratio              |      |       |               |            |       |              |            |       |              |            |       |        |
| (PSRR)                                    | 25°C | I     |               |            | 18    |              |            | 18    |              |            | 18    | mV/V   |

|                                  |      | Test  | AD9283BRS-100 |      |     | AD9  | AD9283BRS-80 |     |      | AD9283BRS-50 |      |
|----------------------------------|------|-------|---------------|------|-----|------|--------------|-----|------|--------------|------|
| Parameter                        | Temp | Level | Min           | Typ  | Max | Min  | Typ          | Max | Min  | Typ Max      | Unit |
| DYNAMIC PERFORMANCE <sup>5</sup> |      |       |               |      |     |      |              |     |      |              |      |
| Transient Response               | 25°C | V     |               | 2    |     |      | 2            |     |      | 2            | ns   |
| Overvoltage Recovery Time        | 25°C | V     |               | 2    |     |      | 2            |     |      | 2            | ns   |
| Signal-to-Noise Ratio (SNR)      |      |       |               |      |     |      |              |     |      |              |      |
| (Without Harmonics)              |      |       |               |      |     |      |              |     |      |              |      |
| $f_{IN} = 10.3 \text{ MHz}$      | 25°C | I     |               | 46.5 |     |      | 47           |     | 44   | 47           | dB   |
| $f_{IN} = 27 \text{ MHz}$        | 25°C | I     |               | 46.5 |     | 44   | 47           |     |      | 47           | dB   |
| $f_{IN} = 41 \text{ MHz}$        | 25°C | I     | 43.5          | 46.5 |     |      | 47           |     |      |              | dB   |
| $f_{IN} = 76 \text{ MHz}$        | 25°C | V     |               | 46.0 |     |      |              |     |      |              | dB   |
| Signal-to-Noise Ratio (SINAD)    |      |       |               |      |     |      |              |     |      |              |      |
| (With Harmonics)                 |      |       |               |      |     |      |              |     |      |              |      |
| $f_{IN} = 10.3 \text{ MHz}$      | 25°C | I     |               | 45   |     |      | 47           |     | 43.5 | 46.5         | dB   |
| $f_{IN} = 27 \text{ MHz}$        | 25°C | I     |               | 45.5 |     | 43.5 | 46.5         |     |      | 46           | dB   |
| $f_{IN} = 41 \text{ MHz}$        | 25°C | I     | 42.5          | 45   |     |      | 42           |     |      |              | dB   |
| $f_{IN} = 76 \text{ MHz}$        | 25°C | V     |               | 42.5 |     |      |              |     |      |              | dB   |
| Effective Number of Bits         |      |       |               |      |     |      |              |     |      |              |      |
| $f_{IN} = 10.3 \text{ MHz}$      | 25°C | I     |               | 7.3  |     |      | 7.5          |     |      | 7.6          | Bits |
| $f_{IN} = 27 \text{ MHz}$        | 25°C | I     |               | 7.4  |     |      | 7.5          |     |      | 7.5          | Bits |
| $f_{IN} = 41 \text{ MHz}$        | 25°C | I     |               | 7.3  |     |      | 7.5          |     |      |              | Bits |
| $f_{IN} = 76 \text{ MHz}$        | 25°C | V     |               | 6.9  |     |      |              |     |      |              | Bits |
| 2nd Harmonic Distortion          |      |       |               |      |     |      |              |     |      |              |      |
| $f_{IN} = 10.3 \text{ MHz}$      | 25°C | I     |               | 57   |     |      | 60           |     | 55   | 60           | dBc  |
| $f_{IN} = 27 \text{ MHz}$        | 25°C | I     |               | 60   |     | 55   | 60           |     |      | 56           | dBc  |
| $f_{IN} = 41 \text{ MHz}$        | 25°C | I     | 50            | 58   |     |      | 55           |     |      |              | dBc  |
| $f_{IN} = 76 \text{ MHz}$        | 25°C | V     |               | 46   |     |      |              |     |      |              | dBc  |
| 3rd Harmonic Distortion          |      |       |               |      |     |      |              |     |      |              |      |
| $f_{IN} = 10.3 \text{ MHz}$      | 25°C | I     |               | 54.5 |     |      | 70           |     | 55   | 70           | dBc  |
| $f_{IN} = 27 \text{ MHz}$        | 25°C | I     |               | 55   |     | 55   | 62.5         |     |      | 60           | dBc  |
| $f_{IN} = 41 \text{ MHz}$        | 25°C | I     | 47            | 52.5 |     |      | 60           |     |      |              | dBc  |
| $f_{IN} = 76 \text{ MHz}$        | 25°C | V     |               | 53   |     |      |              |     |      |              | dBc  |
| Two-Tone Intermod Distortion     |      |       |               |      |     |      |              |     |      |              |      |
| (IMD)                            |      |       |               |      |     |      |              |     |      |              |      |
| $f_{IN} = 10.3 \text{ MHz}$      | 25°C | V     |               | 52   |     |      | 52           |     |      | 52           | dBc  |

### NOTES

### **ABSOLUTE MAXIMUM RATINGS\***

| 112002012111111111111111111111111111111 |
|-----------------------------------------|
| $V_D, V_{DD} \dots 4 V$                 |
| Analog Inputs                           |
| Digital Inputs                          |
| VREF IN $-0.5$ V to $V_D + 0.5$ V       |
| Digital Output Current                  |
| Operating Temperature55°C to +125°C     |
| Storage Temperature65°C to +150°C       |
| Maximum Junction Temperature 150°C      |
| Maximum Case Temperature 150°C          |
|                                         |

<sup>\*</sup>Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions outside of those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

## ORDERING GUIDE

| Model          | Temperature<br>Ranges | Package<br>Descriptions | Package<br>Options |  |
|----------------|-----------------------|-------------------------|--------------------|--|
| AD9283BRS      |                       |                         |                    |  |
| -50, -80, -100 | −40°C to +85°C        |                         | RS-20              |  |
| AD9283/PCB     | 25°C                  | Evaluation Board        |                    |  |

### CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD9283 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.



<sup>&</sup>lt;sup>1</sup>Gain error and gain temperature coefficient are based on the ADC only (with a fixed 1.25 V external reference).

 $<sup>^2</sup>$ t<sub>V</sub> and t<sub>PD</sub> are measured from the 1.5 V level of the ENCODE input to the 50%/50% levels of the digital outputs swing. The digital output load during test is not to exceed an ac load of 10 pF or a dc current of  $\pm 40 \mu A$ .

<sup>&</sup>lt;sup>3</sup>Power dissipation measured with encode at rated speed and a dc analog input.

<sup>&</sup>lt;sup>4</sup>Typical thermal impedance for the RS style (SSOP) 20-lead package:  $\theta_{JC} = 46^{\circ}\text{C/W}$ ,  $\theta_{CA} = 80^{\circ}\text{C/W}$ ,  $\theta_{JA} = 126^{\circ}\text{C/W}$ .

<sup>&</sup>lt;sup>5</sup>SNR/harmonics based on an analog input voltage of -0.7 dBFS referenced to a 1.024 V full-scale input range.

Specifications subject to change without notice.