74ACQ245, 74ACTQ245

 Quiet Series ${ }^{\text {TM }}$ Octal Bidirectional Transceiver with 3-STATE Inputs/Outputs
Features

- $I_{C C}$ and $I_{O Z}$ reduced by 50%

■ Guaranteed simultaneous switching noise level and dynamic threshold performance
■ Guaranteed pin-to-pin skew AC performance

- Improved latch-up immunity
- 3-STATE outputs drive bus lines or buffer memory address registers
■ Outputs source/sink 24 mA
■ Faster prop delays than the standard ACT245

General Description

The ACQ/ACTQ245 contains eight non-inverting bidirectional buffers with 3-STATE outputs and is intended for bus-oriented applications. Current sinking capability is 24 mA at both the A and B ports. The Transmit/Receive (T/信) input determines the direction of data flow through the bidirectional transceiver. Transmit (active-HIGH) enables data from A Ports to B Ports; Receive (activeLOW) enables data from B Ports to A Ports. The Output Enable input, when HIGH, disables both A and B ports by placing them in a HIGH Z condition.
The ACQ/ACTQ utilizes Fairchild Quiet Series ${ }^{\text {TM }}$ technology to guarantee quiet output switching and improve dynamic threshold performance. FACT Quiet Series ${ }^{\text {TM }}$ features GTO ${ }^{\text {TM }}$ output control and undershoot corrector in addition to a split ground bus for superior performance.

Device also available in Tape and Reel. Specify by appending suffix letter " X " to the ordering number.
All packages are lead free per JEDEC: J-STD-020B standard.

Connection Diagram

Pin Description

Pin Names	Description
$\overline{\mathrm{OE}}$	Output Enable Input
$\mathrm{T} / \overline{\mathrm{R}}$	Transmit/Receive Input
$\mathrm{A}_{0}-\mathrm{A}_{7}$	Side A 3-STATE Inputs or 3-STATE Outputs
$\mathrm{B}_{0}-\mathrm{B}_{7}$	Side B 3-STATE Inputs or 3-STATE Outputs

Truth Table

Inputs		Outputs
OE	T/R	
L	L	Bus
L	H	Bus A Data to Bus B
H	X	HIGH-Z State

$$
\begin{aligned}
& \mathrm{H}=\mathrm{HIGH} \text { Voltage Level } \\
& \mathrm{L}=\text { LOW Voltage Level } \\
& \mathrm{X}=\text { Immaterial }
\end{aligned}
$$

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V_{CC}	Supply Voltage	-0.5 V to +7.0 V
$\mathrm{I}_{\text {IK }}$	DC Input Diode Current $\begin{aligned} & \mathrm{V}_{\mathrm{I}}=-0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -20 \mathrm{~mA} \\ & +20 \mathrm{~mA} \end{aligned}$
V_{1}	DC Input Voltage	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$\mathrm{IOK}^{\text {a }}$	DC Output Diode Current $\begin{aligned} & \mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -20 \mathrm{~mA} \\ & +20 \mathrm{~mA} \end{aligned}$
V_{O}	DC Output Voltage	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
I_{0}	DC Output Source or Sink Current	$\pm 50 \mathrm{~mA}$
I_{CC} or $\mathrm{I}_{\mathrm{GND}}$	DC V ${ }_{\text {CC }}$ or Ground Current per Output Pin	$\pm 50 \mathrm{~mA}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
	DC Latch-Up Source or Sink Current	$\pm 300 \mathrm{~mA}$
TJ	Junction Temperature	$140^{\circ} \mathrm{C}$

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Rating
V_{CC}	Supply Voltage ACQ ACTQ	2.0 V to 6.0 V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	4.5 V to 5.5 V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage	0 V to V_{CC}
T_{A}	Operating Temperature	0 V to V_{CC}
$\Delta \mathrm{V} / \Delta \mathrm{t}$	Minimum Input Edge Rate, ACQ Devices: $\mathrm{V}_{\text {IN }}$ from 30\% to 70% of $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}} @ 3.0 \mathrm{~V}, 4.5 \mathrm{~V}, 5.5 \mathrm{~V}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\Delta \mathrm{V} / \Delta \mathrm{t}$	Minimum Input Edge Rate, ACTQ Devices: $V_{\text {IN }}$ from 0.8 V to $2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}} @ 4.5 \mathrm{~V}, 5.5 \mathrm{~V}$	$125 \mathrm{mV} / \mathrm{ns}$

DC Electrical Characteristics for ACQ

Symbol	Parameter	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	Conditions	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units
				Typ.		uaranteed Limits	
V_{IH}	Minimum HIGH Level Input Voltage	3.0	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$	1.5	2.1	2.1	V
		4.5		2.25	3.15	3.15	
		5.5		2.75	3.85	3.85	
VIL	Maximum LOW Level Input Voltage	3.0	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$	1.5	0.9	0.9	V
		4.5		2.25	1.35	1.35	
		5.5		2.75	1.65	1.65	
V_{OH}	Minimum HIGH Level Output Voltage	3.0	$\mathrm{I}_{\text {OUT }}=-50 \mu \mathrm{~A}$	2.99	2.9	2.9	V
		4.5		4.49	4.4	4.4	
		5.5		5.49	5.4	5.4	
		3.0	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{HH}}, \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \end{aligned}$		2.56	2.46	
		4.5	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \end{aligned}$		3.86	3.76	
		5.5	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}^{(1)} \end{aligned}$		4.86	4.76	
V_{OL}	Maximum LOW Level Output Voltage	3.0	$\mathrm{I}_{\text {OUT }}=50 \mu \mathrm{~A}$	0.002	0.1	0.1	V
		4.5		0.001	0.1	0.1	
		5.5		0.001	0.1	0.1	
		3.0	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \hline \end{aligned}$		0.36	0.44	
		4.5	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \end{aligned}$		0.36	0.44	
		5.5	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}^{(1)} \end{aligned}$		0.36	0.44	
$\mathrm{I}_{1 \times}{ }^{(3)}$	Maximum Input Leakage Current	5.5	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}, \mathrm{GND}$		± 0.1	± 1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OLD }}$	Minimum Dynamic Output Current ${ }^{(2)}$	5.5	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max.			75	mA
$\mathrm{I}_{\mathrm{OHD}}$		5.5	$\mathrm{V}_{\mathrm{OHD}}=3.85 \mathrm{~V}$ Min.			-75	mA
$\mathrm{I}_{\mathrm{CC}}{ }^{(3)}$	Maximum Quiescent Supply Current	5.5	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$ or GND		4.0	40.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OzT }}$	Maximum I/O Leakage Current	5.5	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}(\mathrm{OE})=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IH}} ; \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, G N D ; \\ & \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, G N D \end{aligned}$		± 0.3	± 3.0	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic V_{OL}	5.0	Figures 1 \& $2^{(4)}$	1.1	1.5		V
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic V_{OL}	5.0	Figures 1 \& $2^{(4)}$	-0.6	-1.2		V
$\mathrm{V}_{\text {IHD }}$	Minimum HIGH Level Dynamic Input Voltage	5.0	(5)	3.1	3.5		V
$\mathrm{V}_{\text {ILD }}$	Maximum LOW Level Dynamic Input Voltage	5.0	5)	1.9	1.5		V

Notes:

1. All outputs loaded; thresholds on input associated with output under test.
2. Maximum test duration 2.0 ms , one output loaded at a time.
3. I_{IN} and $\mathrm{I}_{\mathrm{CC}} @ 3.0 \mathrm{~V}$ are guaranteed to be less than or equal to the respective limit $@ 5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$.
4. Max number of outputs defined as (n). Data Inputs are driven 0 V to 5 V ; one output @ GND.
5. Max number of Data Inputs (n) switching. ($n-1$) Inputs switching $0 V$ to 5V (ACQ). Input-under-test switching: 5 V to threshold ($\mathrm{V}_{\mathrm{ILD}}$), 0 V to threshold $\left(\mathrm{V}_{\mathrm{IHD}}\right), \mathrm{f}=1 \mathrm{MHz}$.

DC Electrical Characteristics for ACTQ

Symbol	Parameter	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	Conditions	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units
				Typ.		uaranteed Limits	
V_{IH}	Minimum HIGH Level Input Voltage	4.5	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.1 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$	1.5	2.0	2.0	V
		5.5		1.5	2.0	2.0	
VIL	Maximum LOW Level Input Voltage	4.5	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$	1.5	0.8	0.8	V
		5.5		1.5	0.8	0.8	
V_{OH}	Minimum HIGH Level Output Voltage	4.5	$\mathrm{I}_{\text {OUT }}=-50 \mu \mathrm{~A}$	4.49	4.4	4.4	V
		5.5		5.49	5.4	5.4	
		4.5	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \end{aligned}$		3.86	3.76	
		5.5	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}^{(6)} \end{aligned}$		4.86	4.76	
V_{OL}	Maximum LOW Level Output Voltage	4.5	$\mathrm{I}_{\text {OUT }}=50 \mu \mathrm{~A}$	0.001	0.1	0.1	V
		5.5		0.001	0.1	0.1	
		4.5	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \end{aligned}$		0.36	0.44	
		5.5	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}^{(6)} \end{aligned}$		0.36	0.44	
I_{IN}	Maximum Input Leakage Current	5.5	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$		± 0.1	± 1.0	$\mu \mathrm{A}$
lozt	Maximum 3-STATE Leakage Current	5.5	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IH}}, \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \end{aligned}$		± 0.3	± 3.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {CCT }}$	Maximum I ${ }_{\text {CC }}$ /Input	5.5	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$	0.6		1.5	mA
IOLD	Minimum Dynamic	5.5	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max.			75	mA
$\mathrm{I}_{\text {OHD }}$	Output Current ${ }^{(7)}$	5.5	$\mathrm{V}_{\mathrm{OHD}}=3.85 \mathrm{~V}$ Min.			-75	mA
I_{CC}	Maximum Quiescent Supply Current	5.5	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND		4.0	40.0	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic V_{OL}	5.0	Figures 1 \& $2^{(8)}$	1.1	1.5		V
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic V_{OL}	5.0	Figures 1 \& $2^{(8)}$	-0.6	-1.2		V
$\mathrm{V}_{\text {IHD }}$	Minimum HIGH Level Dynamic Input Voltage	5.0	(9)	1.9	2.2		V
$\mathrm{V}_{\text {ILD }}$	Maximum LOW Level Dynamic Input Voltage	5.0	(9)	1.2	0.8		V

Notes:

6. All outputs loaded; thresholds on input associated with output under test.
7. Maximum test duration 2.0 ms , one output loaded at a time.
8. Max number of outputs defined as (n). n-1 Data Inputs are driven 0 V to 3 V ; one output @ GND.
9. Max number of Data Inputs (n) switching. (n-1) Inputs switching OV to 3V (ACTQ). Input-under-test switching: $3 V$ to threshold ($V_{\text {ILD }}$), OV to threshold ($V_{\text {IHD }}$) $f=1 \mathrm{MHz}$.

AC Electrical Characteristics for ACQ

Symbol	Parameter	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})^{(10)}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
			Min.	Typ.	Max.	Min.	Max.	
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Propagation Delay, Data to Output	3.3	2.0	7.5	10.0	2.0	10.5	ns
		5.0	1.5	5.0	6.5	1.5	7.0	
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PZH }}$	Output Enable Time	3.3	3.0	8.5	13.0	3.0	13.5	ns
		5.0	2.0	6.0	8.5	2.0	9.0	
$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLZ }}$	Output Disable Time	3.3	1.0	8.5	14.5	1.0	15.0	ns
		5.0	1.0	7.5	9.5	1.0	10.0	
$\mathrm{t}_{\text {OSHL }}, \mathrm{t}_{\text {OSLH }}$	Output to Output Skew, Data to Output ${ }^{(11)}$	3.3		1.0	1.5		1.5	ns
		5.0		0.5	1.0		1.0	

Notes:
10. Voltage range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$. Voltage range 3.3 is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$.
11. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (toshl) or LOW-to-HIGH (tosth). Parameter guaranteed by design.

AC Electrical Characteristics for ACTQ

Symbol	Parameter	$\mathrm{V}_{\mathrm{CC}}(\mathrm{V})^{(12)}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
			Min.	Typ.	Max.	Min.	Max.	
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Propagation Delay, Data to Output	5.0	1.5	5.5	7.0	1.5	7.5	ns
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PZH }}$	Output Enable Time	5.0	2.0	7.0	9.0	2.0	9.5	ns
$\mathrm{t}_{\mathrm{PHZ}}, \mathrm{t}_{\mathrm{PLZ}}$	Output Disable Time	5.0	1.0	8.0	10.0	1.0	10.5	ns
$\mathrm{t}_{\text {OSHL }}, \mathrm{t}_{\text {OSLH }}$	Output to Output Skew, Data to Output ${ }^{13)}$	5.0		0.5	1.0		1.0	ns

Notes:

12. Voltage range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
13. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW ($\mathrm{t}_{\mathrm{OSHL}}$) or LOW-to-HIGH ($\mathrm{t}_{\mathrm{OSLH}}$). Parameter guaranteed by design.

Capacitance

Symbol	Parameter	Conditions	Typ.	Units
$\mathrm{C}_{I N}$	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=$ OPEN	4.5	pF
$\mathrm{C}_{I / \mathrm{O}}$	Input/Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	15	pF
C_{PD}	Power Dissipation Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	80.0	pF

FACT Noise Characteristics

The setup of a noise characteristics measurement is critical to the accuracy and repeatability of the tests. The following is a brief description of the setup used to measure the noise characteristics of FACT.

Equipment:

Hewlett Packard Model 8180A Word Generator
PC-163A Test Fixture
Tektronics Model 7854 Oscilloscope

Procedure:

1. Verify Test Fixture Loading: Standard Load 50 pF , 500Ω.
2. Deskew the HFS generator so that no two channels have greater than 150 ps skew between them. This requires that the oscilloscope be deskewed first. It is important to deskew the HFS generator channels before testing. This will ensure that the outputs switch simultaneously.
3. Terminate all inputs and outputs to ensure proper loading of the outputs and that the input levels are at the correct voltage.
4. Set the HFS generator to toggle all but one output at a frequency of 1 MHz . Greater frequencies will increase DUT heating and effect the results of the measurement.
5. Set the HFS generator input levels at 0 V LOW and 3 V HIGH for ACT devices and OV LOW and 5V HIGH for AC devices. Verify levels with an oscilloscope.

Notes:

14. $\mathrm{V}_{\mathrm{OHV}}$ and $\mathrm{V}_{\mathrm{OLP}}$ are measured with respect to ground reference.
15. Input pulses have the following characteristics: $\mathrm{f}=1 \mathrm{MHz}, \mathrm{t}_{\mathrm{r}}=3 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}$, skew $<150 \mathrm{ps}$.
Figure 1. Quiet Output Noise Voltage Waveforms
$\mathrm{V}_{\mathrm{OLP}} / \mathrm{V}_{\mathrm{OLV}}$ and $\mathrm{V}_{\mathrm{OHP}} / \mathrm{V}_{\mathrm{OHV}}$:
■ Determine the quiet output pin that demonstrates the greatest noise levels. The worst case pin will usually be the furthest from the ground pin. Monitor the output voltages using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
■ Measure $\mathrm{V}_{\text {OLP }}$ and $\mathrm{V}_{\text {OLV }}$ on the quiet output during the worst case transition for active and enable. Measure $\mathrm{V}_{\mathrm{OHP}}$ and $\mathrm{V}_{\mathrm{OHV}}$ on the quiet output during the worst case active and enable transition.
■ Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements.
$\mathrm{V}_{\text {ILD }}$ and $\mathrm{V}_{\text {IHD }}$:
■ Monitor one of the switching outputs using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
■ First increase the input LOW voltage level, V_{IL}, until the output begins to oscillate or steps out a min of 2ns. Oscillation is defined as noise on the output LOW level that exceeds $\mathrm{V}_{\text {IL }}$ limits, or on output HIGH levels that exceed V_{IH} limits. The input LOW voltage level at which oscillation occurs is defined as $V_{\text {ILD }}$.
■ Next decrease the input HIGH voltage level, $\mathrm{V}_{\text {IH }}$, until the output begins to oscillate or steps out a min of 2ns. Oscillation is defined as noise on the output LOW level that exceeds $V_{\text {IL }}$ limits, or on output HIGH levels that exceed $\mathrm{V}_{I H}$ limits. The input HIGH voltage level at which oscillation occurs is defined as $V_{I H D}$.

- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements.

Figure 2. Simultaneous Switching Test Circuit

Physical Dimensions

Figure 3. 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision andlor date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packagingl

Physical Dimensions (Continued)

LAND PATTERN RECOMMENDATION

M20DREVC

Figure 4. 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/packaging/

Physical Dimensions (Continued)

Figure 5. 20-Lead Quarter Size Outline Package (QSOP), JEDEC MO-137, 0.150" Wide
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision andlor date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/packaging/

Physical Dimensions (Continued)

DIMENSIONS ARE IN MILLIMETERS

NOTES:
A. CONFORMS TO JEDEC REGISTRATION MO-150, VARIATION AE, DATE $1 / 94$.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
D. DIMENSIONS AND TOLERANCES PER ASME Y14.5M - 1994.

MSA20REVB

Figure 6. 20-Lead Shrink Small Outline Package (SSOP), JEDEC MO-150, 5.3mm Wide
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision andlor date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/packaging/

Physical Dimensions (Continued)

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision andlor date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/packagingl

FAIRCHILD
SEMICONDUCTOR*

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

ACEx ${ }^{\text {® }}$	FPS ${ }^{\text {™ }}$	PDP-SPM ${ }^{\text {тм }}$	SyncFET ${ }^{\text {tm }}$
Build it Now ${ }^{\text {™ }}$	FRFET ${ }^{\circledR}$	Power220 ${ }^{\text {® }}$	$\square^{\text {S S }}$ STEM ${ }^{\text {® }}$
CorePLUS ${ }^{\text {¹ }}$	Global Power Resource ${ }^{\text {sm }}$	Power247 ${ }^{\circledR}$	The Power Franchise ${ }^{\text {® }}$
CROSSVOLT ${ }^{\text {TM }}$	Green FPS ${ }^{\text {¹ }}$	POWEREDGE ${ }^{\circledR}$	the Power Franchise
CTL ${ }^{\text {TM }}$	Green FPS ${ }^{\text {™ }}$ e-Series ${ }^{\text {™ }}$	Power-SPM ${ }^{\text {™ }}{ }^{\text {® }}$	P wer franchise
Current Transfer Logic ${ }^{\text {TM }}$	GTO $^{\text {™ }}$	PowerTrench ${ }^{\circledR}$	TinyBoost ${ }^{\text {TM }}$
EcoSPARK ${ }^{\circledR}$	$i-L O^{\text {TM }}$		TinyBuck ${ }^{\text {TM }}$
EZSWITCH ${ }^{\text {TM }}$ *	IntelliMAX ${ }^{\text {™ }}$	QFET ${ }^{\text {® }}$	TinyLogic ${ }^{\circledR}$
E7 ${ }^{\text {м }}$	ISOPLANAR ${ }^{\text {™ }}$	QS ${ }^{\text {™ }}$	TINYOPTOTM
$\Gamma^{\text {® }}$	MegaBuck ${ }^{\text {TM }}$	QT Optoelectronics ${ }^{\text {TM }}$	TinyPower ${ }^{\text {TM }}$
\digamma^{\circledR}	MICROCOUPLER ${ }^{\text {TM }}$	Quiet Series ${ }^{\text {TM }}$	TinyPWM ${ }^{\text {™ }}$
Fairchild ${ }^{\text {® }}$	MicroFET ${ }^{\text {™ }}$	RapidConfigure ${ }^{\text {TM }}$	TinyWire ${ }^{\text {TM }}$
Fairchild Semiconductor ${ }^{\text {® }}$	MicroPak ${ }^{\text {™ }}$	SMART START ${ }^{\text {™ }}$	μ SerDes ${ }^{\text {™ }}$
FACT Quiet Series ${ }^{\text {TM }}$	MillerDrive ${ }^{\text {TM }}$	SPM ${ }^{\text {® }}$	UHC ${ }^{\circledR}$
FACT ${ }^{\circledR}$	Motion-SPM ${ }^{\text {TM }}$	STEALTH ${ }^{\text {TM }}$	Ultra FRFET ${ }^{\text {TM }}$
$\mathrm{FAST}^{\text {® }}$	OPTOLOGIC ${ }^{\circledR}$	SuperFET ${ }^{\text {TM }}$	UniFET ${ }^{\text {TM }}$
FastvCore ${ }^{\text {TM }}$	OPTOPLANAR ${ }^{\circledR}$	SuperSOT ${ }^{\text {TM }}$-3	VCX ${ }^{\text {™ }}$
FlashWriter ${ }^{\text {® }}$ *		SuperSOT ${ }^{\text {TM }}$-6	VCX
		SuperSOT ${ }^{\text {™ }} \mathbf{8}$	
* EZSWITCH ${ }^{\text {TM }}$ and Flash	trademarks of System	rporation, used under license	rchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

