
STK12C68 64 Kbit (8K x 8) AutoStore nvSRAM

Features

- 25 ns, 35 ns, and 45 ns access times
- Hands off automatic STORE on power down with external 68 µF capacitor
- STORE to QuantumTrap nonvolatile elements is initiated by software, hardware, or AutoStore on power down
- RECALL to SRAM initiated by software or power up
- Unlimited Read, Write, and Recall cycles
- 1,000,000 STORE cycles to QuantumTrap
- 100 year data retention to QuantumTrap
- Single 5V+10% operation
- Commercial and industrial temperatures
- 228-pin (330mil) SOIC, 28-pin (300mil) PDIP, 28-pin (600mil) PDIP packages
- 28-pin (300 mil) CDIP and 28-pad (350 mil) LCC packages
- RoHS compliance

Functional Description

The Cypress STK12C68 is a fast static RAM with a nonvolatile element in each memory cell. The embedded nonvolatile elements incorporate QuantumTrap technology producing the world's most reliable nonvolatile memory. The SRAM provides unlimited read and write cycles, while independent nonvolatile data resides in the highly reliable Quantum Trap cell. Data transfers from the SRAM to the nonvolatile elements (the STORE operation) takes place automatically at power down. On power up, data is restored to the SRAM (the RECALL operation) from the nonvolatile memory. Both the STORE and RECALL operations are also available under software control. A hardware STORE is initiated with the HSB pin.

Cypress Semiconductor Corporation Document Number: 001-51027 Rev. *A

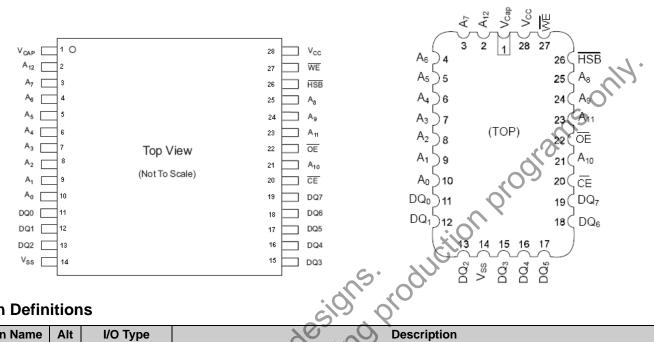
198 Champion Court

San Jose, CA 95134-1709 408-943-2600 ٠ Revised December 11, 2009

STK12C68

Contents

Features	1 Maximum Ra
Functional Description	1 Operating Ra
Logic Block Diagram	1 DC Electrica
Contents	2 Data Retenti
Pin Configurations	3 Capacitance
Pin Definitions	3 Thermal Res
Device Operation	4 AC Test Con
SRAM Read	4 AC Switching
SRAM Write	
AutoStore Operation	
AutoStore Inhibit Mode	Coffiniana Co
Hardware STORE (HSB) Operation	
Hardware RECALL (Power Up)	O 14 1 1 1 1 1 1
Software STORE	Dout Number
Software RECALL	
Data Protection	6 Ordering Info
Noise Considerations	6 Package Dia c Document H
Hardware Protect	.6 Sales, Soluti
Low Average Active Power	6 Sales, Soluti
Preventing Store	6 Products
Best Practices	6 0
. (
A.	
	\mathcal{A}
λ^{10} α^{01}	
×O	
X O	
20.00	
1- 9.	
Noise Considerations Hardware Protect Low Average Active Power Preventing Store	
*	


Maximum Ratings	. 8
Operating Range	8
DC Electrical Characteristics	. 8
Data Retention and Endurance	. 9
Capacitance	. 9
Thermal Resistance	. 9
AC Test Conditions	
AC Switching Characteristics	10
SRAM Read Cycle	10
AutoStore or Power Up RECALL	
Software Controlled STORE/RECALL Cycle	
Hardware STORE Cycle	.14
Switching Waveform	.14
Part Numbering Nomenclature	
Ordering Information	. 15
Package Diagrams	17
Document History Page	21
Sales, Solutions, and Legal Information	21
Worldwide Sales and Design Support	
Products	21

Document Number: 001-51027 Rev. *A

Pin Configurations

Figure 1. 28-Pin SOIC/DIP and LLC

Pin Definitions

Pin Name	Alt	I/O Type	Description
A ₀ -A ₁₂		Input	Address Inputs. Used to select one of the 8,192 bytes of the nvSRAM.
DQ ₀ -DQ ₇		Input or Output	Bidirectional Data I/O Lines. Used as input or output lines depending on operation.
WE	W	Input	Write Enable Input, Active LOW. When the chip is enabled and \overline{WE} is LOW, data on the I/O pins is written to the specific address location.
CE	Ē	Input	Chip Enable Input, Active LOW. When LOW, selects the chip. When HIGH, deselects the chip.
OE	G	Input	Output Enable, Active LOW . The active LOW OE input enables the data output buffers during read cycles. Deasserting OE HIGH causes the I/O pins to tristate.
V _{SS}		Ground	Ground for the Device. The device is connected to ground of the system.
V _{CC}		Power Supply	Power Supply Inputs to the Device.
HSB		Input or Output	Hardware Store Busy (HSB) . When LOW, this output indicates a Hardware Store is in progress. When pulled low external to the chip, it initiates a nonvolatile STORE operation. A weak internal pull up resistor keeps this pin high if not connected (connection optional).
V _{CAP}	Ś	Power Supply	AutoStore Capacitor. Supplies power to nvSRAM during power loss to store data from SRAM to nonvolatile elements.
40		Soo.	

STK12C68

Device Operation

The STK12C68 nvSRAM is made up of two functional components paired in the same physical cell. These are an SRAM memory cell and a nonvolatile QuantumTrap cell. The SRAM memory cell operates as a standard fast static RAM. Data in the SRAM is transferred to the nonvolatile cell (the STORE operation) or from the nonvolatile cell to SRAM (the RECALL operation). This unique architecture enables the storage and recall of all cells in parallel. During the STORE and RECALL operations, SRAM Read and Write operations are inhibited. The STK12C68 supports unlimited reads and writes similar to a typical SRAM. In addition, it provides unlimited RECALL operations from the nonvolatile cells and up to one million STORE operations.

SRAM Read

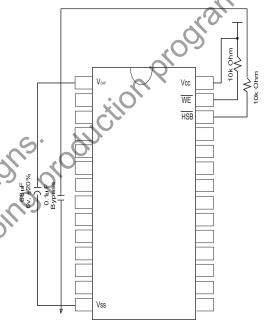
The STK12C68 performs a Read cycle whenever \overline{CE} and \overline{OE} are LOW while WE and HSB are HIGH. The address specified on pins A₀₋₁₂ determines the 8,192 data bytes accessed. When the Read is initiated by an address transition, the outputs are valid after a delay of t_{AA} (Read cycle 1). If the Read is initiated by \overline{CE} or \overline{OE} , the outputs are valid at t_{ACE} or at t_{DOE}, whichever is later (Read cycle 2). The data outputs repeatedly respond to address changes within the t_{AA} access time without the need for transitions on any control input pins, and remains valid until another address change or until \overline{CE} or \overline{OE} is brought HIGH, or WE or HSB is brought LOW.

SRAM Write

<u>A Write cycle is performed whenever CE and WE are LOW and HSB is HIGH. The address inputs must be stable prior to entering the Write cycle and must remain stable until either CE or WE goes HIGH at the end of the cycle. The data on the common I/O pins DQ_{0-7} are written into the memory if it has valid t_{SD} , before the end of a WE controlled Write or before the end of an CE controlled Write. Keep OE HIGH during the entite Write cycle to avoid data bus contention on common I/O lines. If OE is left LOW, internal circuitry turns off the output buffers t_{HZWE} after WE goes LOW.</u>

AutoStore Operation

The STK12C68 stores data to nvSRAM using one of three storage operations

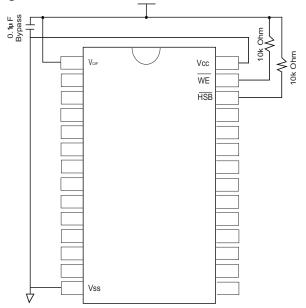

- 1. Hardware store activated by HSB
- 2. Software store activated by an address sequence
- 3. AutoStore on device power down

AutoStore operation is a unique feature of QuantumTrap technology and is enabled by default on the STK12C68.

During normal operation, the device draws current from V_{CC} to charge a capacitor connected to the V_{CAP} pin. This stored charge is used by the chip to perform a single STORE operation. If the voltage on the V_{CC} pin drops below V_{SWITCH}, the part automatically disconnects the V_{CAP} pin from V_{CC}. A STORE operation is initiated with power provided by the V_{CAP} capacitor.

Figure 2 shows the proper connection of the storage capacitor (V_{CAP}) for automatic store operation. A charge storage capacitor between 68 μ F and 220 μ F (±20%) rated at 6V should be provided. The voltage on the V_{CAP} pin is driven to 5V by a charge pump internal to the chip. A pull up is placed on WE to hold it inactive during power up.

Figure 2. AutoStore Mode


In system power mode, both V_{CC} and V_{CAP} are connected to the +5V power supply without the 68 μF capacitor. In this mode, the AutoStore function of the STK12C68 operates on the stored system charge as power goes down. The user must, however, guarantee that V_{CC} does not drop below 3.6V during the 10 ms STORE cycle.

To reduce unnecessary nonvolatile stores, AutoStore, and Hardware Store operations are ignored, unless at least one Write operation has taken place since the most recent STORE or RECALL cycle. Software initiated STORE cycles are performed regardless of whether a Write operation has taken place. An optional pull up resistor is shown connected to HSB. The HSB signal is monitored by the system to detect if an AutoStore cycle is in progress.

STK12C68

Figure 3. AutoStore Inhibit Mode

If the power supply drops faster than 20 us/volt before Vcc reaches V_{SWITCH}, then a 2.2 ohm resistor should be connected between V_{CC} and the system supply to avoid momentary excess of current between V_{CC} and V_{CAP}.

AutoStore Inhibit Mode

If an automatic STORE on power loss is not required, then V_{CC} is tied to ground and +5V is applied to V_{CAP} (Figure 3). This is the AutoStore Inhibit mode, where the AutoStore function is disabled. If the STK12C68 is operated in this configuration, references to V_{CC} are changed to V_{CAP} throughout this data sheet. In this mode, <u>STO</u>RE operations are triggered through software control or the HSB pin. To enable or disable Autostore using an I/O port pin see Preventing Store on page 6. It is not permissible to change between these three options "on the fly".

Hardware STORE (HSB) Operation

The STK12C68 provides the HSB pin for controlling and acknowledging the STORE operations. The HSB pin is used to request a hardware STORE cycle. When the HSB pin is driven LOW, the STK12C68 conditionally initiates a STORE operation after t_{DELAY}. An actual STORE cycle only begins if a Write to the <u>SRAM</u> takes place since the last STORE or RECALL cycle. The HSB pin also acts as an open drain driver that is internally driven LOW to indicate a busy condition, while the STORE (initiated by any means) is in progress.

<u>SRAM</u> Read and Write operations, that are in progress when HSB is driven LOW by any means, are given <u>time</u> to complete before the STORE operation is initiated. After HSB goes LOW, the STK12C68 continues SRAM operations for t_{DELAY} . During t_{DELAY} , multiple SRAM Read operations take place. If a Write is in progress when HSB is pulled LOW, it allows a time, t_{DELAY} to complete. However, any SRAM <u>Write</u> cycles requested after HSB goes LOW are inhibited until HSB returns HIGH.

During any STORE operation, regardless of how it is initiated, the STK12C68 continues to drive the HSB pin LOW, releasing it only when the STORE is complete. After completing the <u>STORE</u> operation, the STK12C68 remains disabled until the HSB pin returns HIGH.

If HSB is not used, it is left unconnected.

Hardware RECALL (Power Up)

During power up or after any low power condition (V_{CC} < V_{RESET}), an internal RECALL request is latched. When V_{CC} once again exceeds the sense voltage of V_{SWITCH}, a RECALL cycle is automatically initiated and takes t_{HRECALL} to complete.

If the STK12C68 is in a Write state at the end of power up RECALL, the SRAM data is corrupted. To help avoid this situation, a 10 Kohm resistor is connected either between WE and system V_{CC} or between CE and system V_{CC}.

Software STORE

Data is transferred from the SRAM to the nonvolatile memory by a software address sequence. The STK12C<u>68</u> software STORE cycle is initiated by executing sequential CE controlled Read cycles from six specific address locations in exact order. During the STORE cycle, an erase of the previous nonvolatile data is first performed followed by a program of the nonvolatile elements. When a STORE cycle is initiated, input and output are disabled until the cycle is completed.

Because a sequence of Reads from specific addresses is used for STORE initiation, it is important that no other Read or Write accesses intervene in the sequence. If they intervene, the sequence is aborted and no STORE or RECALL takes place.

To initiate the software STORE cycle, the following Read sequence is performed:

- 1. Read address 0x0000, Valid READ
- 2. Read address 0x1555, Valid READ
- 3. Read address 0x0AAA, Valid READ
- 4. Read address 0x1FFF, Valid READ
- 5. Read address 0x10F0, Valid READ
- 6. Read address 0x0F0F, Initiate STORE cycle

<u>The</u> software sequence is clocked with \overline{CE} controlled Reads or \overline{OE} controlled Reads. When the sixth address in the sequence is entered, the STORE cycle commences and the chip is disabled. It is important that Read cycles and not Write cycles are used in the sequence. It is not necessary that \overline{OE} is LOW for a valid sequence. After the t_{STORE} cycle time is fulfilled, the SRAM is again activated for Read and Write operation.

Software RECALL

Data is transferred from the nonvolatile memory to the SRAM by a software address sequence. A software RECALL cycle is initiated with a sequence of Read operations in a manner similar to the software STORE initiation. To initiate the RECALL cycle, the following sequence of CE controlled Read operations is performed:

- 1. Read address 0x0000, Valid READ
- 2. Read address 0x1555, Valid READ
- 3. Read address 0x0AAA, Valid READ
- Read address 0x1FFF, Valid READ
- 5. Read address 0x10F0, Valid READ
- 6. Read address 0x0F0E, Initiate RECALL cycle

Internally, RECALL is a two step procedure. First, the SRAM data is cleared: then, the nonvolatile information is transferred into the SRAM cells. After the t_{RECALL} cycle time, the SRAM is again ready for Read and Write operations. The RECALL operation does not alter the data in the nonvolatile elements. The nonvolatile data can be recalled an unlimited number of times.

Data Protection

The STK12C68 protects data from corruption during low voltage conditions by inhibiting all externally initiated STORE and Write operations. The low voltage condition is detected when V_{CC} is less than V_{SWITCH}. If the STK12C68 is in a Write mode (both CE and WE are low) at power up after a RECALL or after a STORE, the Write is inhibited until a negative transition on CE or WE is detected. This protects against inadvertent writes during power up or brown out conditions.

Noise Considerations

The STK12C68 is a high speed memory. It must have a high frequency bypass capacitor of approximately 0.1 µF connected between V_{CC} and V_{SS} , using leads and traces that are as short as possible. As with all high speed CMOS ICs, careful routing of power, ground, and signals reduce circuit noise.

Hardware Protect

The STK12C68 offers hardware protection against inadvertent STORE operation and SRAM Writes during low voltage conditions. When $V_{CAP} < V_{SWITCH}$, all externally initiated STORE operations and SRAM Writes are inhibited. AutoStore can be completely disabled by tying VCC to ground and applying +5V to V_{CAP}. This is the AutoStore Inhibit mode; in this mode, STOREs are only initiated by explicit request using either the software sequence or the HSB pin.

Low Average Active Power

CMOS technology provides the STK12C68 the benefit of drawing significantly less current when it is cycled at times longer than 50 ns. Figure 4 shows the relationship between I_{CC} and Read or Write cycle time. Worst case current consumption is shown for both CMOS and TTL input levels (commercial temperature range, VCC = 5.5V, 100% duty cycle on chip enable). Only standby current is drawn when the chip is disabled. The overall average current drawn by the STK12C68 depends on the following items:

- The duty cycle of chip enable
- The overall cycle rate for accesses
- The ratio of Reads to Writes
- CMOS versus TTL input levels
- The operating temperature
- The V_{CC} level
- Figure 4. Current Versus Cycle Time (Read)

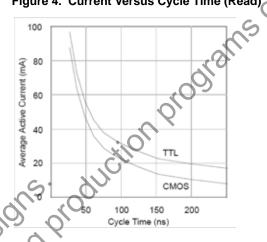
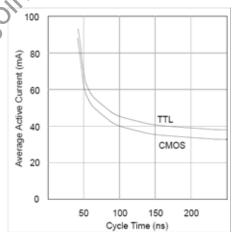



Figure 5. Current Versus Cycle Time (Write)

Preventing Store

The STORE function is disabled by holding HSB high with a driver capable of sourcing 30 mA at a $V_{\mbox{OH}}$ of at least 2.2V, because it must overpower the internal pull down device. This device drives HSB LOW for 20 µs at the onset of a STORE. When the STK12C68 is connected for AutoStore operation (system V_{CC} connected to V_{CC} and a 68 μ F capacitor on V_{CAP}) and V_{CC} crosses V_{SWITCH} on the way down, the STK12C68 attempts to pull HSB LOW. If <u>HSB</u> does not actually get below V_{II}, the part stops trying to pull HSB LOW and abort the STORE attempt.

STK12C68

Best Practices

nvSRAM products have been used effectively for over 15 years. While ease-of-use is one of the product's main system values, experience gained working with hundreds of applications has resulted in the following suggestions as best practices:

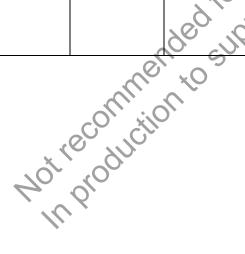

The nonvolatile cells in an nvSRAM are programmed on the test floor during final test and quality assurance. Incoming inspection routines at customer or contract manufacturer's sites sometimes reprograms these values. Final NV patterns are typically repeating patterns of AA, 55, 00, FF, A5, or 5A. The end product's firmware should not assume that an NV array is in a set programmed state. Routines that check memory content values to determine first time system configuration, cold or warm boot status, and so on must always program a unique NV pattern (for example, complex 4-byte pattern of 46 E6 49 53 hex or more random bytes) as part of the final system

Table 1. Hardware Mode Selection

manufacturing test to ensure these system routines work consistently.

- Power up boot firmware routines should rewrite the nvSRAM into the desired state. While the nvSRAM is shipped in a preset state, best practice is to again rewrite the nvSRAM into the desired state as a safeguard against events that might flip the bit inadvertently (program bugs, incoming inspection routines, and so on).
- The Vcap value specified in this data sheet includes a minimum and a maximum value size. The best practice is to meet this requirement and not exceed the maximum Vcap value because the higher inrush currents may reduce the reliability of the internal pass transistor. Customers who want to use a larger Vcap value to make sure there is extra store charge should discuss their Vcap size selection with Cypress.

CE	WE	HSB	A12–A0	Mode	10	Power	
Н	Х	Н	Х	Not Selected	Output High Z	Standby	
L	н	Н	Х	Read SRAM	Output Data	Active ^[3]	
L	L	Н	Х	Write SRAM	Input Data	Active	
Х	X	L	X .	Nonvolatile STORE	Output High Z	I _{CC2} ^[1]	
L	н	Н	0x0000 0x1555 0x0AAA 0x1FFF 0x10F0 0x0F0F	Read SRAM Read SRAM Read SRAM Read SRAM Read SRAM Nonvolatile STORE	Output Data Output Data Output Data Output Data Output Data Output High Z	Active I _{CC2} ^[2, 3]	
L	Н	Heor Jeon	0x0000 0x1555 0x0AAA 0x1FFF 0x10F0 0x0F0E	Read SRAM Read SRAM Read SRAM Read SRAM Read SRAM Nonvolatile RECALL	Output Data Output Data Output Data Output Data Output Data Output High Z	Active ^[2, 3]	

Notes

- 1. HSB STORE operation occurs only if an SRAM Write is done since the last nonvolatile cycle. After the STORE (If any) completes, the part goes into standby mode, inhibiting all operations until HSB rises.
- 2. The six consecutive addresses must be in the order listed. WE must be high during all six consecutive CE controlled cycles to enable a nonvolatile cycle.
- 3. I/O state assumes $\overline{OE} \leq V_{IL}$. Activation of nonvolatile cycles does not depend on state of \overline{OE} .

Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. These user guidelines are not tested.

Storage Temperature65°C to +150°C
Temperature under Bias55°C to +125°C
Voltage on Input Relative to GND0.5V to 7.0V
Voltage on Input Relative to Vss0.6V to V_{CC} + 0.5V

DC Electrical Characteristics Over the operating range ($V_{CO} = 4.5V$ to 5.5V)^[4]

Voltage on DQ_{0-7} or \overline{HSB} 0.5V to Vcc +									c + 0.	5V	
Power D	Dissipatio	on							 	1.0	W

DC output Current (1 output at a time, 1s duration) 15 mA

Operating Range

Range	Ambient Temperature	V _{cc}
Commercial	0°C to +70°C	4.5V to 5.5V
Industrial	-40°C to +85°C	4.5V to 5.5V

Parameter	Description	Test Conditions	Min	Max	L lucit	
	Description			Mun		Unit
I _{CC1}	Average V _{CC} Current	$t_{\rm RC} = 25 \text{ ns}$		L'O.	85 75	mA
		t _{RC} = 35 ns t _{RC} = 45 ns	(0.	75 65	mA mA
		Dependent on output loading and cycle rate.	alues obtained) -		
		without output loads.	\mathcal{A}			
		I _{OUT} = 0 mA.	<u> </u>			<u> </u>
I _{CC2}	Average V _{CC} Current during STORE	All Inputs Do Not Care, $V_{CC} = Max$ Average current for duration t_{STORE}		3	mA	
I _{CC3}	Average V _{CC} Current at	$\overline{\text{WE}} \ge (\text{V}_{\text{CC}} - 0.2\text{V})$. All other inputs cycling.	2		10	mA
	t _{RC} = 200 ns, 5V, 25°C Typical	Dependent on output loading and cycle rate without output loads.				
I _{CC4}	Average V _{CAP} Current during AutoStore Cycle	All Inputs Do Not Care, V _{CC} = Max Average current for duration t _{STORE}		2	mA	
ı [5]	J				07	
I _{SB1} ^[5]	V _{CC} Standby Current (Standby, Cycling TTL	$t_{RC} = 25 \text{ ns}, \underline{CE} \ge V_{H}$			27 24	mA mA
	Input Levels)	$t_{RC} = 35 \text{ ns}, \overline{CE} \ge V_{IH}$ $t_{RC} = 45 \text{ ns}, \overline{CE} \ge V_{IH}$			20	mA
I _{SB2} ^[5]	V _{CC} Standby Current	$\overline{CE} \ge (V_{CC} - 0.2V)$. All others $V_{IN} \le 0.2V$ or \ge	Commercial		1.5	mA
		$(V_{CC} - 0.2V)$. Standby current level after				
		nonvolatile cycle is complete. Inputs are static. f = 0 MHz.	Industrial		2.5	mA
I _{IX}	Input Leakage Current	$V_{CC} = Max, V_{SS} \le V_{IN} \le V_{CC}$	·	-1	+1	μΑ
I _{IX}	Input Leakage Current	$V_{CC} = Max, V_{SS} \le V_{IN} \le V_{CC}$		-1	+1	μA
I _{OZ}	Off State Output	$V_{CO} = Max, V_{SS} \le V_{IN} \le V_{CC}, \overline{CE} \text{ or } \overline{OE} \ge V_{IH}$	or $\overline{WE} \leq V_{IL}$	-5	+5	μΑ
	Leakage Current	~				<u> </u>
V _{IH}	Input HIGH Voltage			2.2	V _{CC} + 0.5	V
V _{IL}	Input LOW Voltage			$V_{SS} - 0.5$	0.8	V
V _{OH}	Output HIGH Voltage	I _{OUT} = -4 mA		2.4		V
V _{OL}	Output LOW Voltage	I _{OUT} = 8 mA			0.4	V
V _{BL}	Logic '0' Voltage on HSB Output	I _{OUT} = 3 mA			0.4	V
V _{CAP}	Storage Capacitor	Between Vcap pin and Vss, 6V rated. 68 µF +	20% nom.	54	260	μF

Notes

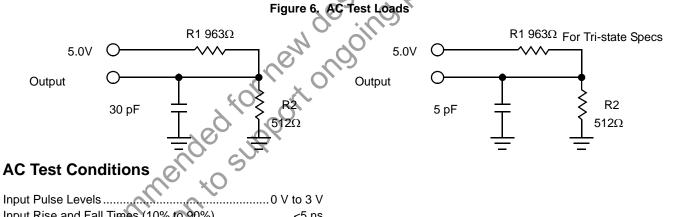
- 4. V_{CC} reference levels throughout this data sheet refer to VCC if that is where the power supply connection is made, or V_{CAP} if VCC is connected to ground. 5. $\overline{CE} \ge V_{IH}$ does not produce standby current levels until any nonvolatile cycle in progress has timed out.

Document Number: 001-51027 Rev. *A

Data Retention and Endurance

Parameter	Description	Min	Unit
DATA _R	Data Retention	100	Years
NV _C	Nonvolatile STORE Operations	1,000	К

Capacitance


In the following table, the capacitance parameters are listed.^[6]

Parameter	Description	Test Conditions	Max 🖉	Unit
C _{IN}	Input Capacitance	$T_{A} = 25^{\circ}C, f = 1 \text{ MHz},$	8 0	pF
C _{OUT}	Output Capacitance	$V_{CC} = 0$ to 3.0 V	S	pF
	Resistance ng table, the thermal resis	tance parameters are listed. ^[6]	ran	

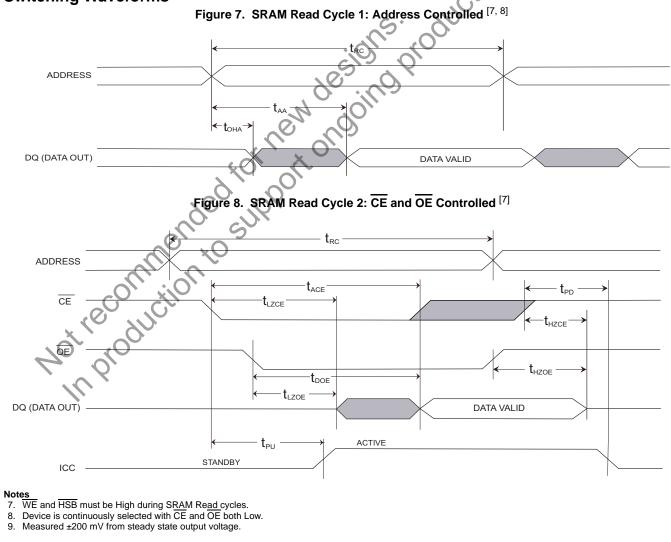
Thermal Resistance

Parameter	Description	Test Conditions	28-SOIC	28-PDIP (300 mil)	28-PDIP (600 mil)	28-CDIP	28-LCC	Unit
Θ_{JA}	Thermal Resis- tance (Junction to Ambient)	Test conditions follow standard test methods and procedures for measuring thermal impedance, per EIA /	46.55	45.16	55.84	46.1	95.31	°C/W
Θ _{JC}	Thermal Resis- tance (Junction to Case)	JESD51.	27.95	31.62	25.74	5.01	9.01	°C/W

s

Not 10 odi

Note 6. These parameters are guaranteed by design and are not tested.



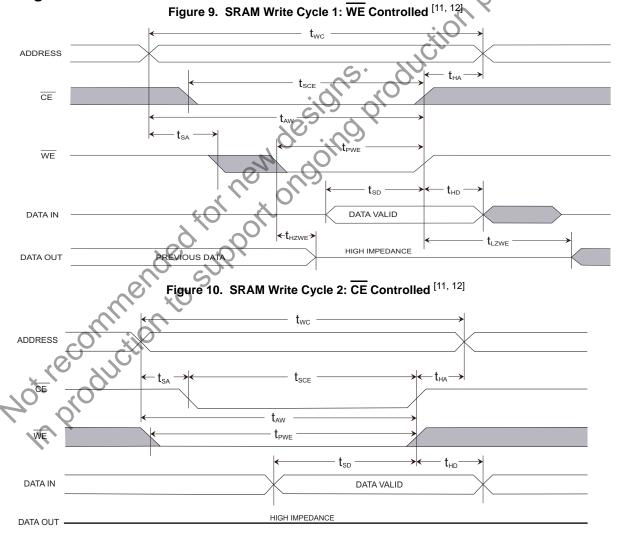
AC Switching Characteristics

SRAM Read Cycle

ameter		25	ns	35 ns		45 ns		
Alt	Description	Min	Max	Min	Max	Min	Max	Unit
t _{ELQV}	Chip Enable Access Time		25		35		45	ns
t _{AVAV,} t _{ELEH}	Read Cycle Time	25		35		45	1	• ns
t _{AVQV}	Address Access Time		25		35		45	ns
t _{GLQV}	Output Enable to Data Valid		10		15	(20	ns
t _{AXQX}	Output Hold After Address Change	5		5		5		ns
t _{ELQX}	Chip Enable to Output Active	5		5		5		ns
t _{EHQZ}	Chip Disable to Output Inactive		10		10	7	12	ns
t _{GLQX}	Output Enable to Output Active	0		0	0	0		ns
t _{GHQZ}	Output Disable to Output Inactive		10	~	10		12	ns
t _{ELICCH}	Chip Enable to Power Active	0		^o		0		ns
t _{EHICCL}	Chip Disable to Power Standby		25		35		45	ns
	Alt telqv tavav, teleh tavqv tgqqv taxqx telqx telqx telqz tgqqz tgqqz telicch	Alt Description t _{ELQV} Chip Enable Access Time t _{AVAV} , t _{ELEH} Read Cycle Time t _{AVQV} Address Access Time t _{GLQV} Address Access Time t _{GLQV} Output Enable to Data Valid t _{AXQX} Output Hold After Address Change t _{ELQX} Chip Enable to Output Active t _{ELQX} Chip Disable to Output Inactive t _{GLQX} Output Enable to Output Inactive t _{GLQX} Output Disable to Output Inactive t _{GHQZ} Output Disable to Output Inactive t _{ELICCH} Chip Enable to Power Active	Alt Description Min t _{ELQV} Chip Enable Access Time t _{AVAV} , t _{ELEH} Read Cycle Time 25 t _{AVQV} Address Access Time t _{GLQV} Address Access Time t _{GLQV} Output Enable to Data Valid t _{AXQX} Output Hold After Address Change 5 t _{ELQX} Chip Enable to Output Active 5 t _{ELQX} Chip Disable to Output Inactive 0 t _{GLQX} Output Enable to Output Active 0 t _{GLQX} Output Disable to Output Inactive 0 t _{GHQZ} Output Disable to Power Active 0	AltDescriptionMinMax t_{ELQV} Chip Enable Access Time25 t_{AVAV}, t_{ELEH} Read Cycle Time25 t_{AVQV} Address Access Time25 t_{AVQV} Address Access Time25 t_{GLQV} Output Enable to Data Valid10 t_{AXQX} Output Hold After Address Change5 t_{ELQX} Chip Enable to Output Active5 t_{EHQZ} Chip Disable to Output Inactive10 t_{GLQX} Output Enable to Output Active0 t_{GHQZ} Output Disable to Output Inactive10 t_{ELICCH} Chip Enable to Power Active0	AltDescriptionMinMaxMin t_{ELQV} Chip Enable Access Time2525 $t_{AVAV,} t_{ELEH}$ Read Cycle Time2535 t_{AVQV} Address Access Time2525 t_{GLQV} Output Enable to Data Valid1010 t_{AXQX} Output Hold After Address Change55 t_{ELQX} Chip Enable to Output Active55 t_{EHQZ} Chip Disable to Output Inactive1010 t_{GLQX} Output Enable to Output Active00 t_{GLQX} Output Enable to Output Inactive1010 t_{GLQX} Output Disable to Output Inactive100 t_{GHQZ} Output Disable to Power Active00 t_{ELICCH} Chip Enable to Power Active00	AltDescriptionMinMaxMinMax t_{ELQV} Chip Enable Access Time2535 t_{AVAV}, t_{ELEH} Read Cycle Time2535 t_{AVQV} Address Access Time2535 t_{AVQV} Address Access Time2535 t_{GLQV} Output Enable to Data Valid1015 t_{AXQX} Output Hold After Address Change55 t_{ELQX} Chip Enable to Output Active55 t_{EHQZ} Chip Disable to Output Inactive1010 t_{GLQX} Output Enable to Output Active00 t_{GHQZ} Output Disable to Output Inactive1010 t_{ELICCH} Chip Enable to Power Active00	AltDescriptionMinMaxMinMaxMin t_{ELQV} Chip Enable Access Time253535 $t_{AVAV,} t_{ELEH}$ Read Cycle Time253545 t_{AVQV} Address Access Time253545 t_{GLQV} Output Enable to Data Valid10155 t_{GLQV} Output Hold After Address Change555 t_{ELQX} Chip Enable to Output Active555 t_{EHQZ} Chip Disable to Output Inactive101010 t_{GLQX} Output Enable to Output Active000 t_{GLQX} Output Enable to Output Inactive101010 t_{GLQX} Output Disable to Output Inactive000 t_{GLQZ} Output Disable to Power Active000 t_{ELICCH} Chip Enable to Power Active000	AltDescriptionMinMaxMinMaxMinMax t_{ELQV} Chip Enable Access Time253545 t_{AVAV}, t_{ELEH} Read Cycle Time253545 t_{AVQV} Address Access Time253545 t_{AVQV} Address Access Time253545 t_{GLQV} Output Enable to Data Valid101520 t_{AXQX} Output Hold After Address Change555 t_{ELQX} Chip Enable to Output Active555 t_{EHQZ} Chip Disable to Output Inactive101012 t_{GLQX} Output Enable to Output Active000 t_{GLQX} Output Enable to Output Inactive101012 t_{GLQX} Output Disable to Output Inactive1000 t_{GLQZ} Output Disable to Output Inactive101012 t_{ELICCH} Chip Enable to Power Active000

Switching Waveforms

Document Number: 001-51027 Rev. *A


Page 10 of 21

SRAM Write Cycle

Min 35	Max	Min	Max	Unit
0.5		45		ns
25		30		ns
nip Enable To End of Write 20 25				ns
12		15	14	ns
0		0	\sim	ns
25		30	y _	ns
0		0		ns
Address Hold After End of Write 0 0 0		0		ns
	13		14	ns
5	3	5		ns
-	25 0 0	25 0 0 13	25 30 0 0 0 0 13 13	25 30 0 0 0 0 13 14

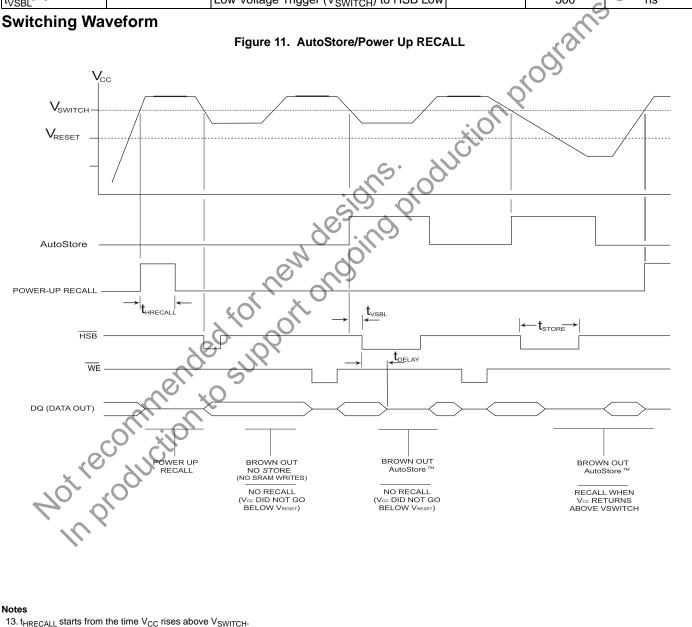
Switching Waveforms

 Notes

 10. If WE is Low when CE goes Low, the outputs remain in the high impedance state.

 11. HSB must be high during SRAM Write cycles.

 12. CE or WE must be greater than V_{IH} during address transitions.


Document Number: 001-51027 Rev. *A

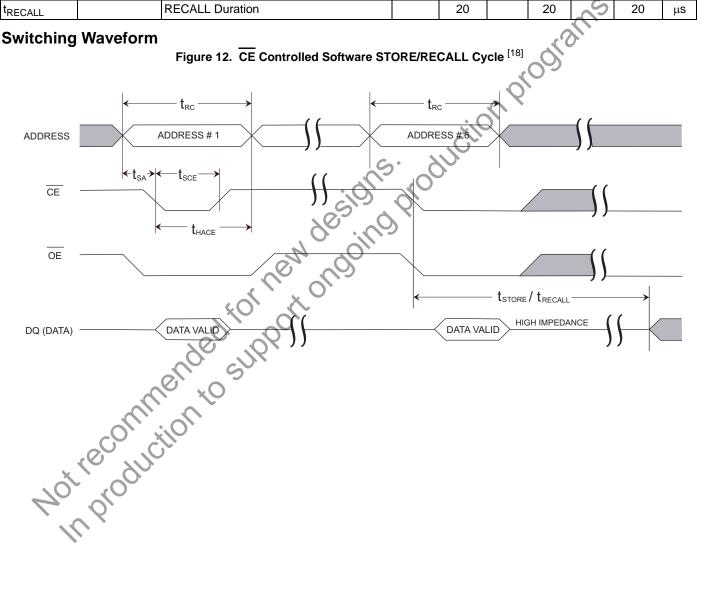
AutoStore or Power Up RECALL

Parameter	Alt	Description	STK1	Unit	
Farameter	Ait	Description	Min	Max	Onit
t _{HRECALL} ^[13]	t _{RESTORE}	Power up RECALL Duration		550	μS
t _{STORE} [14, 15, 16]	t _{HLHZ}	STORE Cycle Duration		10	ms
t _{DELAY} ^[9, 15]	t _{HLQZ} , t _{BLQZ}	Time Allowed to Complete SRAM Cycle	1		μS
V _{SWITCH}		Low Voltage Trigger Level	4.0	4.5	V
V _{RESET}		Low Voltage Reset Level		3.9	N.
t _{VCCRISE}		V _{CC} Rise Time	150		μs
t _{VSBL} ^[11]		Low Voltage Trigger (V _{SWITCH}) to HSB Low		300	ns

Switching Waveform

Notes

- 13. $\underline{t_{HRECALL}}$ starts from the time V_{CC} rises above $V_{SWITCH}.$
- 14. CE and OE low for output behavior.
- 15. $\overline{\text{CE}}$ and $\overline{\text{OE}}$ low and WE high for output behavior.
- 16. HSB is asserted low for 1us when V_{CAP} drops through V_{SWITCH}. If an SRAM Write has not taken place since the last nonvolatile cycle, HSB is released and no store takes place.



Software Controlled STORE/RECALL Cycle

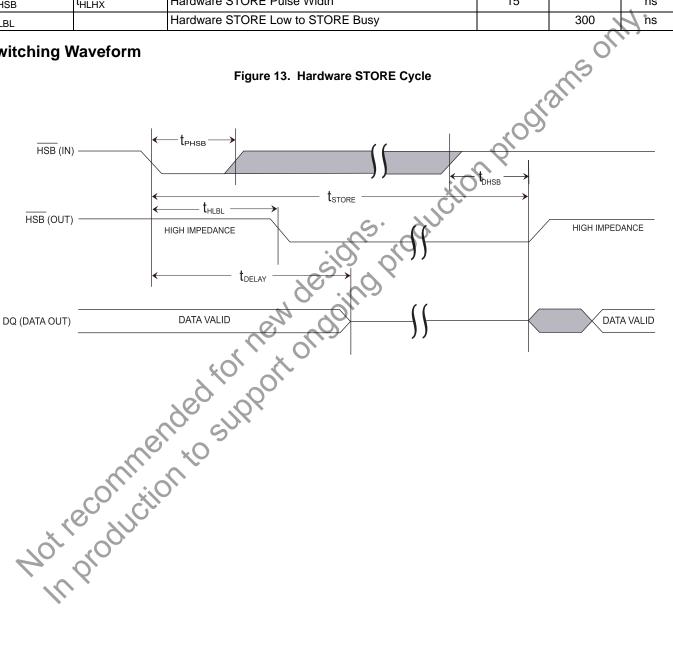
The software controlled STORE/RECALL cycle follows. [18]

Parameter	Alt	Description	25 ns		35 ns		45 ns		Unit
Farameter	Alt	Description	Min	Max	Min	Мах	Min	Max	Unit
t _{RC} ^[14]	t _{AVAV}	STORE/RECALL Initiation Cycle Time	25		35		45		ns
t _{SA} ^[17]	t _{AVEL}	Address Setup Time	0		0		0	14	ns
t _{CW} ^[17]	t _{ELEH}	Clock Pulse Width	20		25		30	2	ns
t _{HACE} ^[17]	t _{ELAX}	Address Hold Time	20		20		20),	ns
t _{RECALL}		RECALL Duration		20		20	S	20	μS

Switching Waveform

Notes

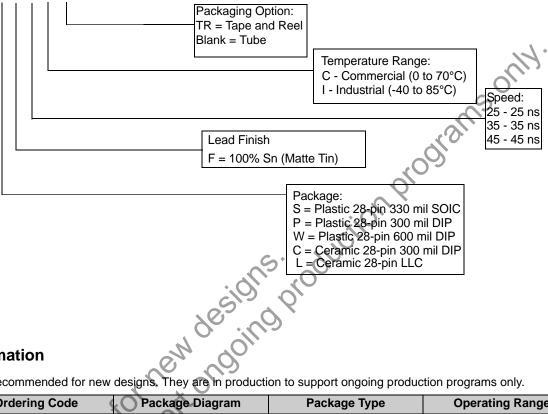
17. The software sequence is clocked on the falling edge of CE without involving OE (double clocking aborts the sequence).


18. The six consecutive addresses must be read in the order listed in Table 1 on page 7. WE must be HIGH during all six consecutive cycles.

Hardware STORE Cycle

Δ I+	Description	STK1	Unit	
Alt	Description	Min	Max	Unit
t _{HLHZ}	STORE Cycle Duration		10	ms
t _{RECOVER} , t _{HHQX}	Hardware STORE High to Inhibit Off		700	ns
t _{HLHX}	Hardware STORE Pulse Width	15		ns
	Hardware STORE Low to STORE Busy		300	ns
	t _{RECOVER} , t _{HHQX}	t _{HLHZ} STORE Cycle Duration t _{RECOVER} , t _{HHQX} Hardware STORE High to Inhibit Off t _{HLHX} Hardware STORE Pulse Width	Alt Description t _{HLHZ} STORE Cycle Duration t _{RECOVER} , t _{HHQX} Hardware STORE High to Inhibit Off t _{HLHX} Hardware STORE Pulse Width	MinMaxt _{HLHZ} STORE Cycle Duration10t _{RECOVER} , t _{HHQX} Hardware STORE High to Inhibit Off700t _{HLHX} Hardware STORE Pulse Width15

Switching Waveform



Note 19. $t_{\mbox{DHSB}}$ is only applicable after $t_{\mbox{STORE}}$ is complete.

Part Numbering Nomenclature

STK12C68 - S F 45 I TR

Ordering Information

These parts are not recommended for new designs. They are in production to support ongoing production programs only.

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
25	STK12C68-SF25TR	001-85058	28-pin SOIC (330 mil)	Commercial
	STK12C68-SF25	001-85058	28-pin SOIC (330 mil)	
	STK12C68-PF25	001-85014	28-pin PDIP (300 mil)	
	STK12C68-WF25	001-85017	28-pin PDIP (600 mil)	
	STK12C68-SF25ITR	001-85058	28-pin SOIC (330 mil)	Industrial
	STK12C68-SF25I	001-85058	28-pin SOIC (330 mil)	
	STK12C68-PF251	001-85014	28-pin PDIP (300 mil)	
	STK12C68-WF25I	001-85017	28-pin PDIP (600 mil)	
35	STK12C68-C35	001-51695	28-pin CDIP (300 mil)	Commercial
20	STK12C68-L35	001-51696	28-pin LCC (350 mil)	
	STK12C68-C35I	001-51695	28-pin CDIP (300 mil)	Industrial
	STK12C68-L35I	001-51696	28-pin LCC (350 mil)	

Ordering Information (continued)

These parts are not recommended for new designs. They are in production to support ongoing production programs only.

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
45	STK12C68-SF45TR	001-85058	28-pin SOIC (330 mil)	Commercial
	STK12C68-SF45	001-85058	28-pin SOIC (330 mil)	
	STK12C68-PF45	001-85014	28-pin PDIP (300 mil)	
	STK12C68-WF45	001-85017	28-pin PDIP (600 mil)	onth.
	STK12C68-C45	001-51695	28-pin CDIP (300 mil)	
	STK12C68-L45	001-51696	28-pin LCC (350 mil)	S
	STK12C68-SF45ITR	001-85058	28-pin SOIC (330 mil)	Industrial
	STK12C68-SF45I	001-85058	28-pin SOIC (330 mil)	
	STK12C68-PF45I	001-85014	28-pin PDIP (300 mil)	
	STK12C68-WF45I	001-85017	28-pin PDIP (600 mil)	
	STK12C68-C45I	001-51695	28-pin CDIP (300 mil)	
	STK12C68-L45I	001-51696	28-pin LCC (350 mil)	

All parts are Pb-free. The above table contains Final information. Contact your local Cypress sales representative for availability of these parts

PD pin CDH [28-pin LCC] press sales representive production Not reconnicion Not reconnicion

Package Diagrams

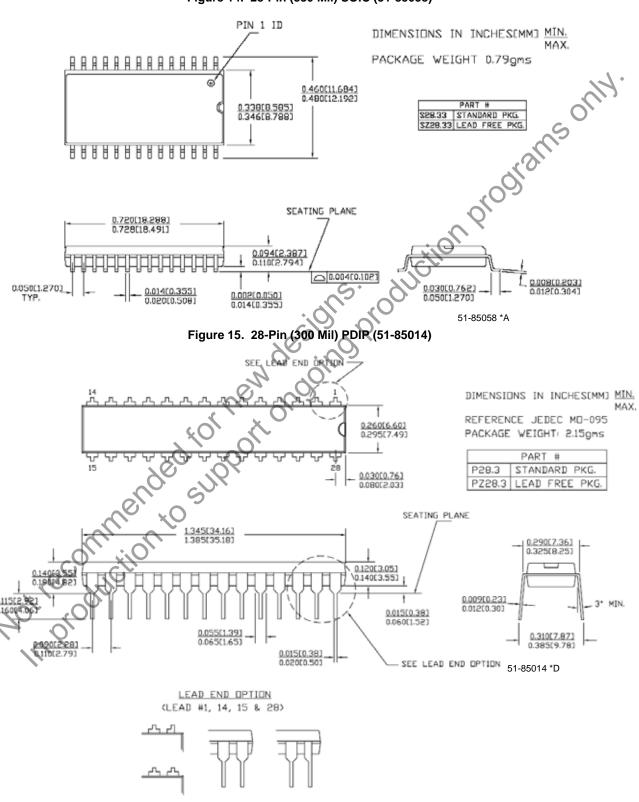
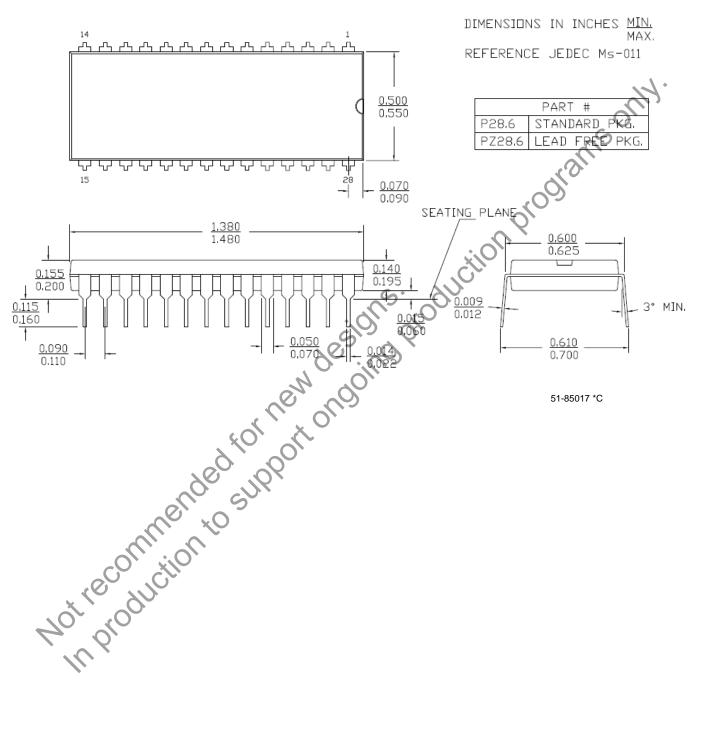
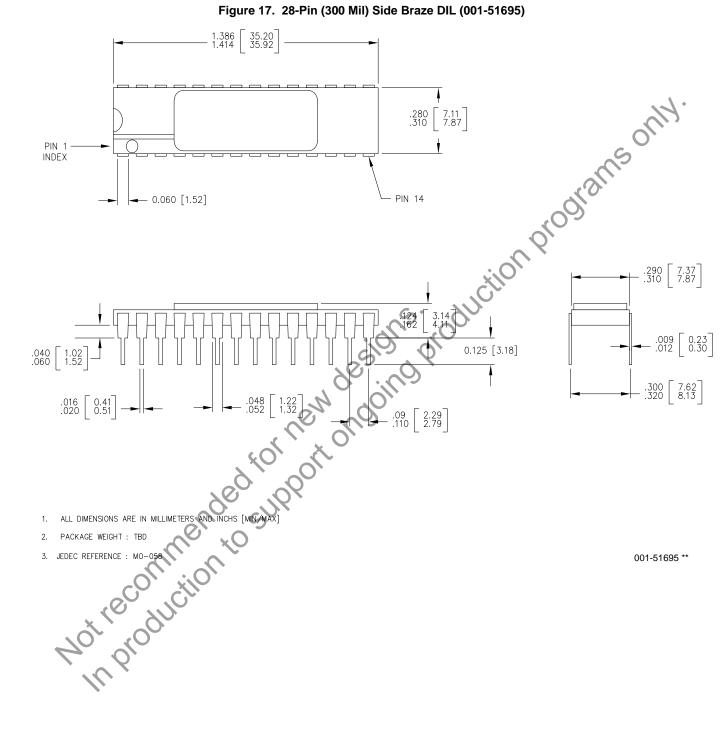



Figure 14. 28-Pin (330 Mil) SOIC (51-85058)

Document Number: 001-51027 Rev. *A



Package Diagrams (continued)

Package Diagrams (continued)

Package Diagrams (continued)

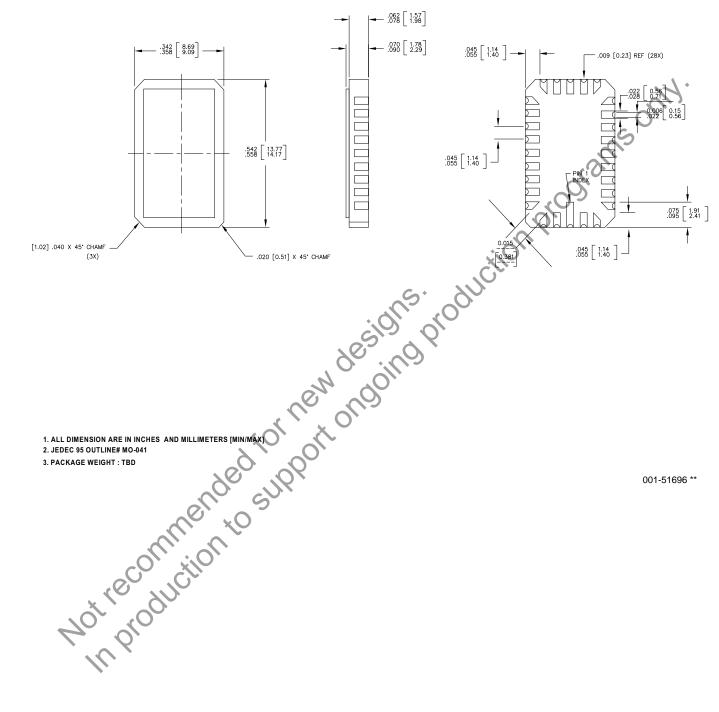


Figure 18. 28-Pad (350 Mil) LCC (001-51696)

Document History Page

Document Title: STK12C68 64 Kbit (8K x 8) AutoStore nvSRAM Document Number: 001-51027					
Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change	
**	2606744	GVCH	01/30/2009	New data sheet	
*A	2826441	GVCH	12/11/2009	Added following text in the Ordering Information section: "These parts are not recommended for new designs. In production to support ongoing pro- duction programs only." Added watermark in PDF stating "Not recommended for new designs. In production to support ongoing production programs only." Added Contents on page 2.	

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives and distributors. To find the office ction closest to you, visit us at cypress.com/sales.

Products

PSoC	psoc.cypress.com
Clocks & Buffers	clocks.cypress.com
Wireless	wireless.cypress.com
Memories	memory.cypress.com
Image Sensors	image.cypress.com
USB	psoc.cypress.com/usb
	cended for new onde

© Cypress Semiconductor Corporation, 2006-2009. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems and in doing so indemnifies Cypress against all charges. application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable licensee to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 001-51027 Rev. *A

Revised December 11, 2009

Page 21 of 21

All products and company names mentioned in this document may be the trademarks of their respective holders