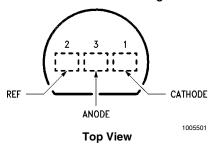


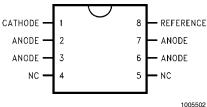
LM431

Adjustable Precision Zener Shunt Regulator

General Description

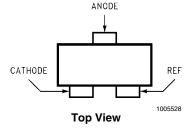

The LM431 is a 3-terminal adjustable shunt regulator with guaranteed temperature stability over the entire temperature range of operation. The output voltage may be set at any level greater than 2.5V ($V_{\rm REF}$) up to 36V merely by selecting two external resistors that act as a voltage divided network. Due to the sharp turn-on characteristics this device is an excellent replacement for many zener diode applications.

Features


- Average temperature coefficient 50 ppm/°C
- Temperature compensated for operation over the full temperature range
- Programmable output voltage
- Fast turn-on response
- Low output noise

Connection Diagrams

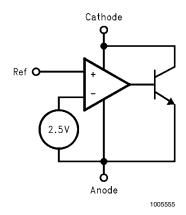
TO-92: Plastic Package


SO-8: 8-Pin Surface Mount

Top view

Note: NC = Not internally connected.

SOT-23: 3-Lead Small Outline



Ordering Information

Package	Typical Accura	cy Order Number/Pac	Temperature	Transport	NSC		
	0.5%	1%	2%	Range	Media	Drawing	
TO-92	LM431CCZ/ LM431CCZ	LM431BCZ/ LM431BCZ	LM431ACZ/ LM431ACZ	0°C to +70°C	Rails	Z03A	
	LM431CIZ/ LM431CIZ	LM431BIZ/ LM431BIZ	LM431AIZ/ LM431AIZ	-40°C to +85°C	Halls		
SO-8	LM431CCM/ 431CCM	LM431BCM/ 431BCM	LM431ACM/ LM431ACM	0°C to +70°C	Rails		
	LM431CCMX/ 431CCM	LM431BCMX/ 431BCM	LM431ACMX/ LM431ACM	0°C to +70°C	Tape & Reel	- M08A	
	LM431CIM/ 431CIM	LM431BIM/ 431BIM	LM431AIM/ LM431AIM	4000 to 10500	Rails		
	LM431CIMX/ 431CIM	LM431BIMX/ 431BIM	LM431AIMX/ LM431AIM	-40°C to +85°C	Tape &Reel		
SOT-23	LM431CCM3/ N1B	LM431BCM3/ N1D	LM431ACM3/ N1F	Rails			
	LM431CCM3X/ N1B	LM431BCM3X/ N1D	LM431ACM3X/ N1F	0°C to +70°C	Tape & Reel	MF03A	
	LM431CIM3 N1A	LM431BIM3 N1C	LM431AIM3 N1E	4000 to 10500	Rails		
	LM431CIM3X N1A	LM431BIM3X N1C	LM431AIM3X N1E	-40°C to +85°C	Tape &Reel		

Symbol and Functional Diagrams

DC Test Circuits

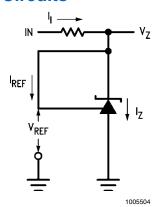
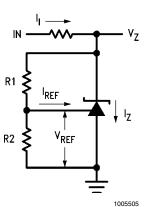



FIGURE 1. Test Circuit for $V_Z = V_{REF}$

Note: $V_Z = V_{REF} (1 + R1/R2) + I_{REF} R1$

FIGURE 2. Test Circuit for $V_Z > V_{REF}$

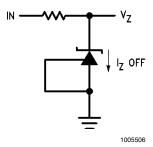


FIGURE 3. Test Circuit for Off-State Current

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature Range -65°C to +150°C

Operating Temperature Range

Soldering Information

Infrared or Convection (20 sec.) 235°C
Wave Soldering (10 sec.) 260°C (lead temp.)
Cathode Voltage 37V
Continuous Cathode Current -10 mA to +150 mA

Reference Voltage -0.5V
Reference Input Current 10 mA

Internal Power Dissipation (Note 2,

Note 3

 TO-92 Package
 0.78W

 SO-8 Package
 0.81W

 SOT-23 Package
 0.28W

Operating Conditions

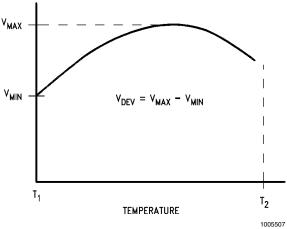
 Min
 Max

 Cathode Voltage
 V_{REF}
 37V

 Cathode Current
 1.0 mA
 100 mA

LM431 Electrical Characteristics

T_A = 25°C unless otherwise specified


Symbol	Parameter	(Conditions	Min	Тур	Max	Units
V _{REF}	Reference Voltage	$V_Z = V_{REF}$, $I_I = 10 \text{ mA}$		2.440	2.495	2.550	V
		LM431A (Figure 1)					
		$V_Z = V_{REF}$, $I_I = 10 \text{ mA}$		2.470	2.495	2.520	V
		LM431B (Figure 1)					
		$V_Z = V_{REF}$, $I_I = 10 \text{ mA}$		2.485	2.500	2.510	V
		LM431C (Figure 1)					
V _{DEV}	Deviation of Reference Input Voltage Over	$V_Z = V_{REF}$, $I_I = 10 \text{ mA}$,			8.0	17	mV
	Temperature (Note 4)	T _A = Full Range (Figure 1)					
ΔV _{REF}	Ratio of the Change in Reference Voltage	I _Z = 10 mA	V _Z from V _{REF} to 10V		-1.4	-2.7	mV/V
ΔV_Z	to the Change in Cathode Voltage	(Figure 2)	V _Z from 10V to 36V		-1.0	-2.0	
I _{REF}	Reference Input Current	$R_1 = 10 \text{ k}\Omega, F$	$R_2 = \infty$		2.0	4.0	μA
		I _I = 10 mA <i>(Figure 2)</i>					
I _{REF}	Deviation of Reference Input Current over	$R_1 = 10 \text{ k}\Omega, R_2 = \infty,$					
	Temperature $I_1 = 10 \text{ mA},$				0.4	1.2	μΑ
	T _A = Full Range (Figu		nge (Figure 2)				
I _{Z(MIN)}	Minimum Cathode Current for Regulation	V _Z = V _{REF} (Figure 1)			0.4	1.0	mA
I _{Z(OFF)}	Off-State Current	V _Z = 36V, V _{REF} = 0V (<i>Figure 3</i>)			0.3	1.0	μA
r _Z	Dynamic Output Impedance (Note 5)	$V_Z = V_{REF}$, LM431A,				0.75	Ω
		Frequency = 0 Hz (Figure 1)					
		$V_Z = V_{REF}$, LM431B, LM431C				0.50	Ω
		Frequency = 0 Hz (Figure 1)					

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Electrical specifications do not apply when operating the device beyond its rated operating conditions.

Note 2: $T_{J \text{ Max}} = 150^{\circ}\text{C}$.

Note 3: Ratings apply to ambient temperature at 25°C. Above this temperature, derate the TO-92 at 6.2 mW/°C, the SO-8 at 6.5 mW/°C, the SOT-23 at 2.2 mW/°C.

Note 4: Deviation of reference input voltage, V_{DEV}, is defined as the maximum variation of the reference input voltage over the full temperature range.

The average temperature coefficient of the reference input voltage, V_{REF} , is defined as:

$${}_{\propto} V_{REF} \, \frac{ppm}{{}^{\circ}\!C} \, = \, \frac{\pm \left[\frac{V_{Max} - V_{Min}}{V_{REF} \, (at \, 25^{\circ}\!C)} \right] 10^6}{T_2 - T_1} = \frac{\pm \left[\frac{V_{DEV}}{V_{REF} \, (at \, 25^{\circ}\!C)} \right] 10^6}{T_2 - T_1}$$

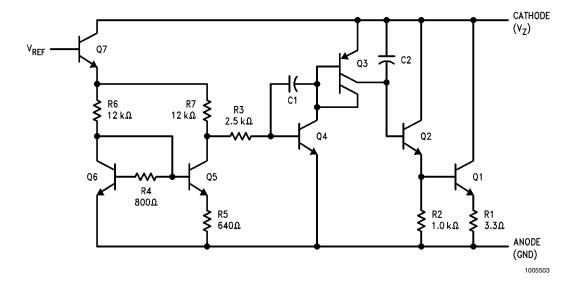
Where

 $T_2 - T_1$ = full temperature change (0-70°C).

 $\mathbf{V}_{\mathsf{REF}}$ can be positive or negative depending on whether the slope is positive or negative.

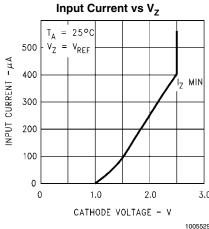
Example: $V_{DEV} = 8.0$ mV, $V_{REF} = 2495$ mV, $T_2 - T_1 = 70$ °C, slope is positive.

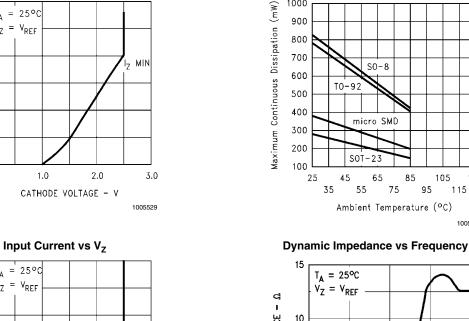
$$\text{CV}_{REF} = \frac{\left[\frac{8.0 \text{ mV}}{2495 \text{ mV}}\right] 10^6}{70^{\circ}\text{C}} = +46 \text{ ppm/}^{\circ}\text{C}$$

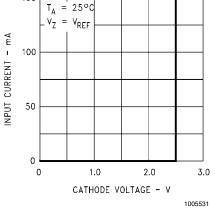

Note 5: The dynamic output impedance, ${\bf r}_{\rm Z}$, is defined as:

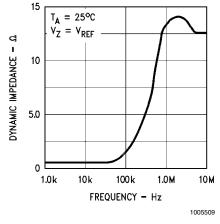
$$r_Z = \frac{\Delta V_Z}{\Delta I_Z}$$

When the device is programmed with two external resistors, R1 and R2, (see $Figure\ 2$), the dynamic output impedance of the overall circuit, r_Z , is defined as:


$$r_Z = \frac{\Delta V_Z}{\Delta I_Z} \cong \left[r_Z \left(1 + \frac{R1}{R2} \right) \right]$$


Equivalent Circuit


5


Typical Performance Characteristics

6

Thermal Information

S0-8

75

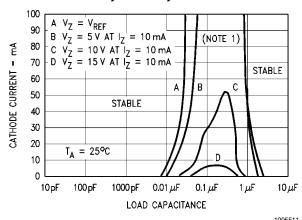
105

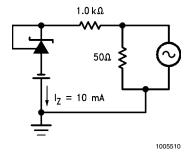
115

95

125

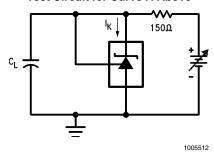
1005530

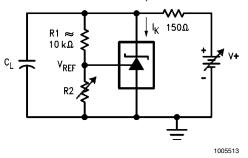

1000


900

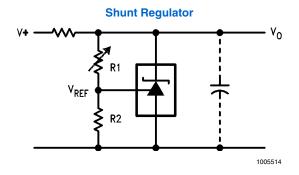
800

700

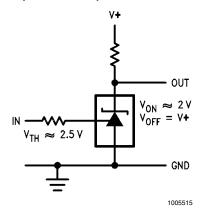

Stability Boundary Conditions



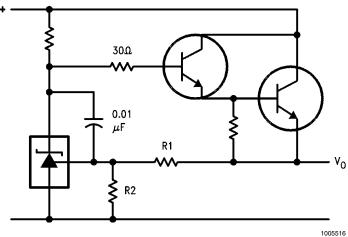
Note: The areas under the curves represent conditions that may cause the device to oscillate. For curves B, C, and D, R2 and V+ were adjusted to establish the initial V_Z and I_Z conditions with $C_L = 0$. V^+ and C_L were then adjusted to determine the ranges of stability.


Test Circuit for Curve A Above

Test Circuit for Curves B, C and D Above

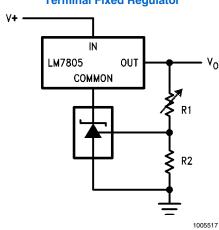


Typical Applications



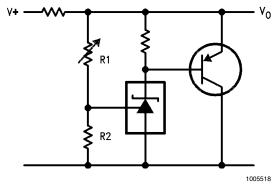
$$V_{O} \approx \left(1 + \frac{R1}{R2}\right) V_{REF}$$

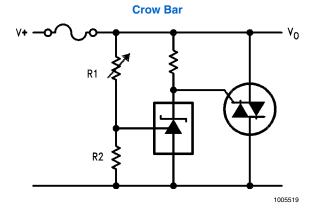
Single Supply Comparator with Temperature Compensated Threshold



Series Regulator

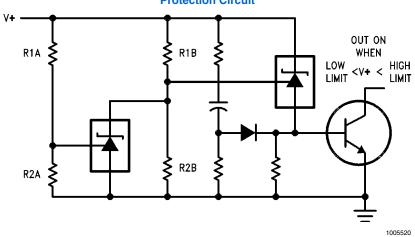
 $V_O \approx \left(1 + \frac{R1}{R2}\right) V_{REF}$


Output Control of a Three Terminal Fixed Regulator

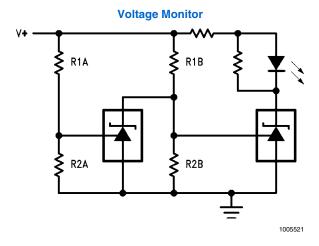

$$V_O = \left(1 + \frac{R1}{R2}\right) V_{REF}$$

$$V_{O\ MIN} = V_{REF} + 5V$$

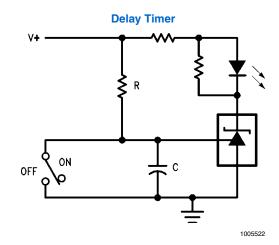
Higher Current Shunt Regulator



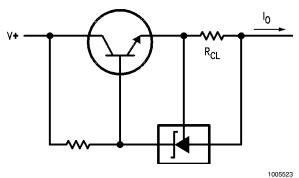
$$V_{O} \approx \left(1 + \frac{R1}{R2}\right) V_{REF}$$



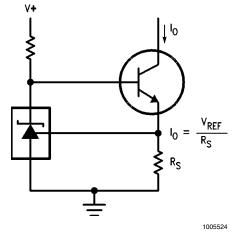
$$V_{LIMIT} \approx \bigg(\ 1\ + \frac{R1}{R2}\bigg) V_{REF}$$


Over Voltage/Under Voltage Protection Circuit

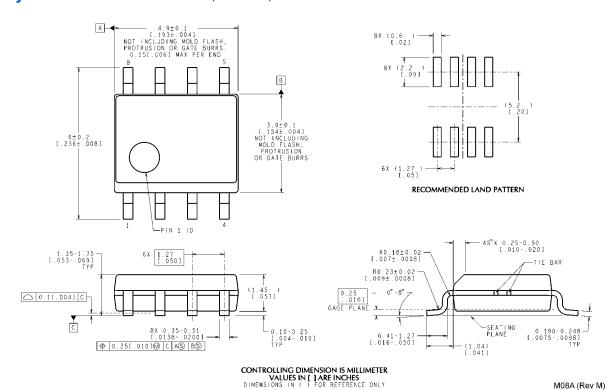
$$\begin{split} & \text{LOW LIMIT} \approx \text{V}_{\text{REF}} \left(1 + \frac{\text{R1B}}{\text{R2B}} \right) + \text{V}_{\text{BE}} \\ & \text{HIGH LIMIT} \approx \text{V}_{\text{REF}} \left(1 + \frac{\text{R1A}}{\text{R2A}} \right) \end{split}$$



$$\begin{split} \text{LOW LIMIT} &\approx V_{REF} \left(1 + \frac{R1B}{R2B} \right) \quad \begin{array}{l} \text{LED ON WHEN} \\ \text{LOW LIMIT} &< V^+ < \text{HIGH LIMIT} \\ \\ \text{HIGH LIMIT} &\approx V_{REF} \left(1 + \frac{R1A}{R2A} \right) \end{split}$$


$$\mathsf{DELAY} = \mathsf{R} \bullet \mathsf{C} \bullet \, \ln \frac{\mathsf{V} +}{(\mathsf{V}^+) - \mathsf{V}_\mathsf{REF}}$$

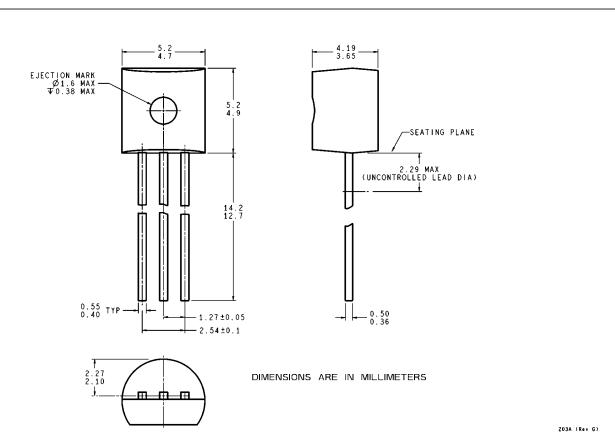
Current Limiter or Current Source



$$I_O = \frac{V_{REF}}{R_{CL}}$$

Constant Current Sink

Physical Dimensions inches (millimeters) unless otherwise noted


8-Pin SOIC NS Package Number M08A

Α В (.090) [2.29] (3X .030 [0.76] .099::005 [2.51*0:12] .051 ±.004 .0375 RECOMENDED LAND PATTERN .075 [1.91] .018-.024 [0.46-0.61] .035-.044 R.004 MIN TYP .005±.002 [0.13±0.05] △ .004 [0.1] (C .0005-.0040 [0.025-0.102] TYP -SEATING PLANE $\left[\begin{array}{c} 0.24 ^{+0.04}_{-0.02} \\ 0.61 ^{+0.10}_{-0.05} \end{array} \right]$.015±.002 TYP [0.39±0.05]

CONTROLLING DIMENSION IS INCH VALUES IN [] ARE MILLIMETERS

MF03A (Rev B)

SOT-23 Molded Small Outline Transistor Package (M3) NS Package Number MF03A

NS Package Number Z03A

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at: www.national.com

Pro	oducts	Design Support			
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench		
Audio	www.national.com/audio	App Notes	www.national.com/appnotes		
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns		
Data Converters	www.national.com/adc	Samples	www.national.com/samples		
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards		
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging		
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green		
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts		
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality		
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback		
Voltage References	www.national.com/vref	Design Made Easy	www.national.com/easy		
PowerWise® Solutions	www.national.com/powerwise	Applications & Markets	www.national.com/solutions		
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero		
Temperature Sensors	www.national.com/tempsensors	SolarMagic™	www.national.com/solarmagic		
PLL/VCO	www.national.com/wireless	PowerWise® Design University	www.national.com/training		

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2010 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959 National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com