Features

- High-speed, low-power, first-in first-out (FIFO) memories
- $64 \mathrm{~K} \times 9$ (CY7C4282)
- $128 \mathrm{~K} \times 9$ (CY7C4292)
- 0.5-micron CMOS for optimum speed/power
- High-speed, near-zero latency (true dual-ported memory cell), $100-\mathrm{MHz}$ operation (10-ns read/write cycle times)
- Low power
$-I_{C C}=40 \mathrm{~mA}$
$-I_{S B}=2 \mathrm{~mA}$
- Fully asynchronous and simultaneous read and write operation
- Empty, Full, and Programmable Almost Empty and Almost Full status flags
- TTL-compatible
- Retransmit function
- Output Enable (OE) pin
- Independent read and write enable pins
- Supports free-running 50\% duty cycle clock inputs
- Width-Expansion Capability
- Depth-Expansion Capability through token-passing scheme (no external logic required)
- 64-pin 10×10 STQFP

64K/128K x 9 Deep Sync FIFOs with Retransmit and Depth Expansion

Functional Description

The CY7C4282/CY7C4292 are high-speed, low-power, FIFO memories with clocked read and write interfaces. All devices are nine bits wide. The CY7C4282/CY7C4292 can be cascaded to increase FIFO depth. Programmable features include Almost Full/Almost Empty flags. These FIFOs provide solutions for a wide variety of data buffering needs, including high-speed data acquisition, multiprocessor interfaces, video and communications buffering.
These FIFOs have 9 -bit input and output ports that are controlled by separate clock and enable signals. The input port is controlled by a free-running clock (WCLK) and a write-enable pin ($\overline{\mathrm{WEN}}$).
Retransmit and Synchronous Almost Full/Almost Empty flag features are available on these devices.
Depth expansion is possible using the cascade input ($\overline{\mathrm{XI}})$, cascade output ($\overline{\mathrm{XO}})$, and First Load ($\overline{\mathrm{FL}})$ pins. The $\overline{\mathrm{XO}}$ pin is connected to the $\overline{\mathrm{XI}}$ pin of the next device, and the $\overline{\mathrm{XO}}$ pin of the last device should be connected to the $\overline{\mathrm{XI}}$ pin of the first device. The FL pin of the first device is tied to VSS and the FL pin of all the remaining devices should be tied to V_{CC}.
When WEN is asserted, data is written into the FIFO on the rising edge of the WCLK signal. While WEN is held active, data is continually written into the FIFO on each cycle. The output port is controlled in a similar manner by a free-running read clock (RCLK) and a read enable pin (REN). In addition, the CY7C4282/92 have an output enable pin (OE). The read and write clocks may be tied together for single-clock operation or the two clocks may be run independently for asynchronous read/write applications. Clock frequencies up to 100 MHz are achievable.

Pin Configuration

STQFP

Selection Guide

	CY7C4282	CY7C4292
Density	$64 \mathrm{k} \times 9$	$128 \mathrm{k} \times 9$
Package	64 -pin 10x10 STQFP	64 -pin 10x10 STQFP

Pin Definitions

Signal Name	Description	I/O	
D_{0-8}	Data Inputs	I	Data Inputs for 9-bit bus.
Q_{0-8}	Data Outputs	O	Data Outputs for 9-bit bus.
$\overline{\mathrm{WEN}}$	Write Enable	I	The only write enable when device is configured to have programmable flags. Data is written on a LOW-to-HIGH transition of WCLK when $\overline{\text { WEN is asserted and } \overline{\mathrm{FF}} \text { is HIGH. }}$
$\overline{\mathrm{REN}}$	Read Enable	I	Enables the device for Read operation. $\overline{\text { REN }}$ must be asserted LOW to allow a read operation.
WCLK	Write Clock	I	The rising edge clocks data into the FIFO when $\overline{\text { WEN }}$ is LOW and the FIFO is not Full. When LD is asserted, WCLK writes data into the programmable flag-offset register.

Pin Definitions

Signal Name	Description	1/0	Description
RCLK	Read Clock	1	The rising edge clocks data out of the FIFO when REN is LOW and the FIFO is not Empty. When LD is LOW, RCLK reads data out of the programmable flag-offset register.
$\overline{\mathrm{EF}}$	Empty Flag	O	When $\overline{\mathrm{EF}}$ is LOW, the FIFO is empty. $\overline{\mathrm{EF}}$ is synchronized to RCLK.
$\overline{\mathrm{FF}}$	Full Flag	O	When $\overline{\mathrm{FF}}$ is LOW, the FIFO is full. $\overline{\mathrm{FF}}$ is synchronized to WCLK.
$\overline{\text { PAE }}$	Programmable Almost Empty	\bigcirc	When PAE is LOW, the FIFO is almost empty based on the almost empty offset value programmed into the FIFO. PAE is synchronized to RCLK.
$\overline{\text { PAF }} \overline{\text { XO }}$	Programmable Almost Full/ Expansion Output	\bigcirc	Dual-Mode Pin. Cascaded - Connected to $\overline{\mathrm{XI}}$ of next device. Not Cascaded - When $\overline{\mathrm{PAF}}$ is LOW, the FIFO is almost full based on the almost full offset value programmed into the FIFO. PAF is synchronized to WCLK.
$\overline{\mathrm{FL}} / \mathrm{RT}$	First Load/ Retransmit	1	Dual-Mode Pin. Cascaded - The first device in the daisy chain will have $\overline{F L}$ tied to $V_{S S}$; all other devices will have $\overline{\mathrm{FL}}$ tied to V_{CC}. In standard mode or width expansion, $\overline{\mathrm{FL}}$ is tied to $\mathrm{V}_{\text {SS }}$ on all devices. Not Cascaded-Retransmit function is available in stand-alone mode by strobing RT.
$\overline{\mathrm{XI}} / \overline{\mathrm{LD}}$	Expansion Input/Load	1	Dual-Mode Pin. Cascaded - Connected to $\overline{\mathrm{XO}}$ of previous device. Not Cascaded - $\overline{\mathrm{LD}}$ is used to write or read the programmable flag offset registers. $\overline{\text { LD }}$ must be asserted low during reset to enable standalone or width expansion operation. If programmable offset register access is not required, $\overline{\mathrm{LD}}$ can be tied to $\overline{\mathrm{RS}}$ directly.
$\overline{\mathrm{OE}}$	Output Enable	1	When $\overline{\mathrm{OE}}$ is LOW, the FIFO's data outputs drive the bus to which they are connected. If $\overline{\mathrm{OE}}$ is HIGH, the FIFO's outputs are in High Z (high-impedance) state.
$\overline{\mathrm{RS}}$	Reset	1	Resets device to empty condition. A reset is required before an initial read or write operation after power-up.

Functional Description (continued)

The CY7C4282/92 provides four status pins: Empty, Full, Programmable Almost Empty, and Programmable Almost Full. The Almost Empty/Almost Full flags are programmable to single word granularity. The programmable flags default to Empty+7 and Full-7.
The flags are synchronous, i.e., they change state relative to either the read clock (RCLK) or the write clock (WCLK). When entering or exiting the Empty and Almost Empty states, the flags are updated exclusively by the RCLK. The flags denoting Almost Full, and Full states are updated exclusively by WCLK. The synchronous flag architecture guarantees that the flags maintain their status for at least one cycle
All configurations are fabricated using an advanced 0.5μ CMOS technology. Input ESD protection is greater than 2001 V , and latch-up is prevented by the use of guard rings.

Architecture

The CY7C4282/92 consists of an array of 64 K to 128 K words of 9 bits each (implemented by a dual-port array of SRAM cells), a read pointer, a write pointer, control signals (RCLK, WCLK, REN, WEN, RS), and flags (EF, PAE, PAF, FF).

Resetting the FIFO

Upon power-up, the FIFO must be reset with a Reset ($\overline{\mathrm{RS}}$) cycle. This causes the FIFO to enter the Empty condition signified by EF being LOW. All data outputs $\left(Q_{0-8}\right)$ go LOW $t_{\text {RSF }}$ after the rising edge of RS. In order for the FIFO to reset to its default state, the user must not read or write while RS is LOW. All flags are guaranteed to be valid $t_{\text {RSF }}$ after $\overline{\mathrm{RS}}$ is taken LOW.

During reset of the FIFO, the state of the $\overline{\mathrm{XI}} / \overline{\mathrm{LD}}$ pin determines if depth expansion operation is used. For depth expansion operation, $\overline{\mathrm{XI}} / \overline{\mathrm{LD}}$ is tied to $\overline{\mathrm{XO}}$ of the next device. See "Depth Expansion Configuration" and Figure 3. For standalone or width-expansion configuration, the XI/LD pin must be asserted low during reset.
There is a $0-\mathrm{ns}$ hold time requirement for the $\overline{\mathrm{XI}} / \overline{\mathrm{LD}}$ configuration at the $\overline{\mathrm{RS}}$ deassertion edge. This allows the user to tie $\mathrm{XI} / \mathrm{LD}$ to RS directly for applications that do not require access to the flag offset registers.

FIFO Operation

When the $\overline{\mathrm{WEN}}$ is asserted LOW and $\overline{\mathrm{FF}}$ is HIGH, data present on the D_{0-8} pins is written into the FIFO on each rising edge of the WCLK signal. Similarly, when the REN is asserted LOW and $\overline{E F}$ is HIGH, data in the FIFO memory will be presented on the Q_{0-8} outputs. New data will be presented on each rising edge of RCLK while $\overline{R E N}$ is active. $\overline{R E N}$ must set up $t_{E N S}$ before RCLK for it to be a valid read function. WEN must occur $t_{\text {ENS }}$ before WCLK for it to be a valid write function.
An output enable $(\overline{\mathrm{OE}})$ pin is provided to three-state the Q_{0-8} outputs when $\overline{\mathrm{OE}}$ is asserted. When $\overline{\mathrm{OE}}$ is enabled (LOW), data in the output register will be available to the Q_{0-8} outputs after toe. If devices are cascaded, the OE function will only output data on the FIFO that is read enabled.
The FIFO contains overflow circuitry to disallow additional writes when the FIFO is full, and underflow circuitry to disallow additional reads when the FIFO is empty. An empty FIFO maintains the data of the last valid read on its Q_{0-8} outputs even after additional reads occur.

CY7C4282
CY7C4292

Programming

When $\overline{\mathrm{LD}}$ is held LOW during Reset, this pin is the load ($\overline{\mathrm{LD}})$ enable for flag offset programming. In this configuration, $\overline{\text { LD }}$ can be used to access the four 9-bit offset registers contained in the CY7C4282/CY7C4292 for writing or reading data to these registers.
When the device is configured for programmable flags and both $\overline{\mathrm{LD}}$ and $\overline{\text { WEN }}$ are LOW, the first LOW-to-HIGH transition of WCLK writes data from the data inputs to the empty offset least significant bit (LSB) register. The second, third, and fourth LOW-to-HIGH transitions of WCLK store data in the empty offset most significant bit (MSB) register, full offset LSB register, and full offset MSB register, respectively, when LD and WEN are LOW. The fifth LOW-to-HIGH transition of WCLK while $\overline{\text { LD }}$ and $\overline{\text { WEN }}$ are LOW writes data to the empty LSB register again. Figure 1 shows the registers sizes and default values for the various device types.
$64 K \times 9$
$128 \mathrm{~K} \times 9$

Figure 1. Offset Register Location and Default Values
It is not necessary to write to all the offset registers at one time. A subset of the offset registers can be written; then by bringing the LD input HIGH, the FIFO is returned to normal read and write operation. The next time $\overline{\mathrm{LD}}$ is brought LOW, a write operation stores data in the next offset register in sequence.
The contents of the offset registers can be read to the data outputs when $\overline{\text { LD }}$ is LOW and $\overline{\text { REN }}$ is LOW. LOW-to-HIGH transitions of RCLK read register contents to the data outputs. Writes and reads should not be performed simultaneously on the offset registers.

Programmable Flag ($\overline{\text { PAE }}, \overline{\text { PAF }}$) Operation

Whether the flag offset registers are programmed as described in Table 1 or the default values are used, the programmable almost-empty flag (PAE) and programmable almost-full flag ($\overline{\mathrm{PAF}}$) states are determined by their correNote:

1. The same selection sequence applies to reading from the registers. $\overline{R E N}$ is enabled and a read is performed on the LOW-to-HIGH transition of RCLK.

Programmable Almost Empty/Almost Full Flag

The CY7C4282/CY7C4292 features programmable Almost Empty and Almost Full Flags. Each flag can be programmed (described in the Programming section) a specific distance from the corresponding boundary flags (Empty or Full). When the FIFO contains the number of words or fewer for which the flags have been programmed, the $\overline{\mathrm{PAF}}$ or $\overline{\mathrm{PAE}}$ will be asserted, signifying that the FIFO is either Almost Full or Almost Empty. See Table 2 for a description of programmable flags.
Table 2. Status Flags

Number of Words in FIFO		$\overline{\mathrm{FF}}$	$\overline{\text { PAF }}$	PAE	$\overline{E F}$
CY7C4282	CY7C4292				
0	0	H	H	L	L
1 to $\mathrm{n}^{[2]}$	1 to $\mathrm{n}^{[2]}$	H	H	L	H
($\mathrm{n}+1)$ to $(65536-(\mathrm{m}+1)$)	($\mathrm{n}+1)$ to (131072-(m+1))	H	H	H	H
$(65536-\mathrm{m})^{[3]}$ to 65535	$(131072-\mathrm{m})^{[3]}$ to 131071	H	L	H	H
65536	131072	L	L	H	H

Retransmit

The retransmit feature is beneficial when transferring packets of data. It enables the receipt of data to be acknowledged by the receiver and retransmitted if necessary.
The Retransmit (RT) input is active in the stand-alone and width expansion modes. The retransmit feature is intended for use when a number of writes equal to or less than the depth of the FIFO have occurred and at least one word has been read since the last $\overline{\mathrm{RS}}$ cycle. A HIGH pulse on RT resets the internal read pointer to the first physical location of the FIFO. WCLK and RCLK may be free running but must be disabled during and $t_{\text {RTR }}$ after the retransmit pulse. With every valid read cycle after retransmit, previously accessed data is read and the read pointer is incriminated until it is equal to the write pointer. Flags are governed by the relative locations of the read and write pointers and are updated during a retransmit cycle. Data written to the FIFO after activation of RT are trans-
mitted also. The full depth of the FIFO can be repeatedly retransmitted.

Width-Expansion Configuration

Word width may be increased simply by connecting the corresponding input controls signals of multiple devices. A composite flag should be created for each of the end-point status flags ($\overline{\mathrm{EF}}$ and $\overline{\mathrm{FF}}$). The partial status flags ($\overline{\mathrm{PAE}}$ and PAF) can be detected from any one device. Figure 2 demonstrates a 18-bit word width by using two CY7C4282/92. Any word width can be attained by adding additional CY7C4282/92.
When the CY7C4282/92 is in a Width-Expansion Configuration, the Read Enable (REN) control input can be grounded (see Figure 2). In this configuration, the Load ($\overline{\mathrm{LD}}$) pin is set to LOW at Reset so that the pin operates as a control to load and read the programmable flag offsets.

[^0]CY7C4282

Figure 2. Block Diagram of $64 \mathrm{~K} \times 9 / 128 \mathrm{~K} \times 9$ 1M Deep Sync FIFO Memory Used in a Width Expansion Configuration

Depth Expansion Configuration

The CY7C4282/92 can easily be adapted to applications requiring more than $64 \mathrm{~K} / 128 \mathrm{~K}$ words of buffering. Figure 3 shows Depth Expansion using three CY7C4282/92s. Maximum depth is limited only by signal loading. Follow these steps:

1. The first device must be designated by grounding the First Load (FL) control input.
2. All other devices must have $\overline{\mathrm{FL}}$ in the HIGH state.
3. The Expansion Out $(\overline{\mathrm{XO}})$ pin of each device must be tied to the Expansion $\ln (\mathrm{XI})$ pin of the next device.
4. $\overline{\mathrm{EF}}$ and $\overline{\mathrm{FF}}$ composite flags are created by O-Ring together each individual respective flag.

Figure 3. Block Diagram of $64 \mathrm{Kx} 9 / 128 \mathrm{Kx} 9$ One Meg Deep Sync FIFO Memory with Programmable Flags used in Depth Expansion Configuration

CY7C4282

Maximum Ratings ${ }^{[4]}$

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Supply Voltage to Ground Potential .-0.5 V to +7.0 V
DC Voltage Applied to Outputs in High-Z State \qquad -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$

DC Input Voltage .. -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Output Current into Outputs (LOW)............................. 20 mA
Static Discharge Voltage... > 2001V
(per MIL-STD-883, Method 3015)
Latch-up Current
200 mA
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\text {CC }}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial ${ }^{[5]}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[6]}$

Parameter	Description	Test Conditions	7C4282/92-10		7C4282/92-15		7C4282/92-25		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \\ & \mathrm{l}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \end{aligned}$	2.4		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \\ & \mathrm{l}_{\mathrm{OL}}=8.0 \mathrm{~mA} \end{aligned}$		0.4		0.4		0.4	V
V_{IH}	Input HIGH Voltage		2.0	V_{CC}	2.0	V_{CC}	2.0	V_{CC}	V
V_{IL}	Input LOW Voltage		-0.5	0.8	-0.5	0.8	-0.5	0.8	V
I_{IX}	Input Leakage Current	$V_{\text {CC }}=$ Max.	-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
$\begin{array}{\|l\|} \hline \mathrm{I}_{\mathrm{OZL}} \\ \mathrm{I}_{\mathrm{OZH}} \end{array}$	Output OFF, High Z Current	$\begin{aligned} & \overline{\mathrm{OE}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{~V}_{\mathrm{SS}}<\mathrm{V}_{\mathrm{O}}<\mathrm{V}_{\mathrm{CC}} \end{aligned}$	-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
$\mathrm{lCCl}^{[7]}$	Active Power Supply Current	Com'l		40		40		40	mA
		Ind		45					mA
${ }^{1}{ }^{\text {B }}{ }^{[8]}$	Average Standby Current	Com'l		2		2		2	mA
		Ind		2					mA

Capacitance ${ }^{[9]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\mathbb{I}}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	5	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	7	pF

AC Test Loads and Waveforms ${ }^{[10,11]}$

Equivalent to: THÉVENIN EQUIVALENT 410Ω

Notes:

4. The voltage on any input or I/O pin cannot exceed the power pin during power-up.
5. T_{A} is the "instant on" case temperature.
6. See the last page of this specification for Group A subgroup testing information.
7. Input signals switch from OV to 3 V with a rise/fall time of less than 3 ns , clocks and clock enables switch at maximum frequency 20Mhz, while data inputs switch at 10 MHz . Outputs are unloaded
8. All inputs $=\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$, except WCLK and RCLK (which are switching at frequency $=0 \mathrm{MHz}$). All outputs are unloaded.
9. Tested initially and after any design or process changes that may affect these parameters
10. $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ for all AC parameters except for $\mathrm{t}_{\mathrm{OHz}}$.
11. $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ for $\mathrm{t}_{\mathrm{OHz}}$.

Switching Characteristics Over the Operating Range

Parameter	Description	7C4282/92-10		7C4282/92-15		7C4282/92-25		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {S }}$	Clock Cycle Frequency		100		66.7		40	MHz
t_{A}	Data Access Time	2	8	2	10	2	15	ns
${ }^{\text {t CLK }}$	Clock Cycle Time	10		15		25		ns
${ }^{\text {t }}$ CLKH	Clock HIGH Time	4.5		6		10		ns
tclkL	Clock LOW Time	4.5		6		10		ns
t_{DS}	Data Set-up Time	3		4		6		ns
t_{DH}	Data Hold Time	0.5		1		1		ns
$\mathrm{t}_{\text {ENS }}$	Enable Set-up Time	3		4		6		ns
$\mathrm{t}_{\text {ENH }}$	Enable Hold Time	0.5		1		1		ns
$\mathrm{t}_{\text {RS }}$	Reset Pulse Width ${ }^{[12]}$	10		15		25		ns
$\mathrm{t}_{\text {RSS }}$	Reset Set-up Time	8		10		15		ns
$\mathrm{t}_{\text {RSR }}$	Reset Recovery Time	8		10		15		ns
$\mathrm{t}_{\text {RSF }}$	Reset to Flag and Output Time		10		15		25	ns
$t_{\text {PRT }}$	Retransmit Pulse Width	60		60		60		ns
$\mathrm{t}_{\text {RTR }}$	Retransmit Recovery Time	90		90		90		ns
tolz	Output Enable to Output in Low $\mathrm{Z}^{[13]}$	0		0		0		ns
toe	Output Enable to Output Valid	3	7	3	8	3	12	ns
$\mathrm{t}_{\mathrm{OHZ}}$	Output Enable to Output in High Z ${ }^{[13]}$	3	7	3	8	3	12	ns
$\mathrm{t}_{\text {WFF }}$	Write Clock to Full Flag		8		10		15	ns
$\mathrm{t}_{\text {REF }}$	Read Clock to Empty Flag		8		10		15	ns
$\mathrm{t}_{\text {PAF }}$	Clock to Programmable Almost-Full Flag		8		10		15	ns
$\mathrm{t}_{\text {PAE }}$	Clock to Programmable Almost-Full Flag		8		10		15	ns
${ }^{\text {tSKEW1 }}$	Skew Time between Read Clock and Write Clock for Empty Flag and Full Flag	5		6		10		ns
${ }^{\text {tSKEW2 }}$	Skew Time between Read Clock and Write Clock for Almost-Empty Flag and Almost-Full Flag	10		15		18		ns

Notes:
12. Pulse widths less than minimum values are not allowed.
13. Values guaranteed by design, not currently tested.

Switching Waveforms

Read Cycle Timing

Notes:

14. $t_{\text {SKEW } 1}$ is the minimum time between a rising RCLK edge and a rising WCLK edge to guarantee that $\overline{\mathrm{FF}}$ will go HIGH during the current clock cycle. If the time between the rising edge of RCLK and the rising edge of WCLK is less than tSKEW1, then $\overline{\text { FF }}$ may not change state until the next WCLK rising edge.
15. $t_{S K E W 1}$ is also the minimum time between a rising WCLK edge and a rising RCLK edge to guarantee that $\overline{E F}$ will go HIGH during the current clock cycle. It the time between the rising edge of WCLK and the rising edge of RCLK is less than tsKEW2, then $\overline{E F}$ may not change state until the next RCLK rising edge.

Switching Waveforms (continued)

First Data Word Latency after Reset with Simultaneous Read and Write

Note:

16. The clocks (RCLK, WCLK) can be free-running during reset.
17. For standalone or width expansion configuration only.
18. After reset, the outputs will be LOW if $\overline{\mathrm{OE}}=0$ and three-state if $\overline{\mathrm{OE}}=1$.
 The Latency Timing applies only at the Empty Boundary ($\mathrm{EF}=\mathrm{LOW}$).
19. The first word is available the cycle after EF goes HIGH, always.

Switching Waveforms (continued)

Programmable Almost Empty Flag Timing

Programmable Almost Full Flag Timing

Note:
21. $t_{\text {SKEW2 }}$ is the minimum time between a rising WCLK and a rising RCLK edge for $\overline{P A E}$ to change state during that clock cycle. If the time between the edge of WCLK and the rising RCLK is less than $\mathrm{t}_{\text {SKEW2 }}$, then PAE may not change state until the next RCLK.
22. $P A E$ offset $=n$.
23. If a read is preformed on this rising edge of the read clock, there will be Empty $+(n-1)$ words in the FIFO when $\overline{\text { PAE }}$ goes LOW
24. If a write is performed on this rising edge of the write clock, there will be Full - ($m-1$) words of the FIFO when PAF goes LOW.
25. 16,384-m words for CY7C4282, 32,768 - m words for CY4292.
26. $\mathrm{I}_{\text {SKEW }}$ is the minimum time between a rising RCLK edge and a rising WCLK edge for $\overline{\mathrm{PAF}}$ to change during that clock cycle. If the time between the rising edge of RCLK and the rising edge of WCLK is less than tSKEW2, then PAF may not change state until the next WCLK.

Switching Waveforms (continued)

Write Programmable Registers

Read Programmable Registers

Retransmit Timing ${ }^{[27,28,29]}$

Notes:
27. Clocks are free running in this case.
28. The flags may change state during Retransmit as a result of the offset of the read and write pointers, but flags will be valid at $t_{\text {RTR }}$.
29. For the synchronous PAE and PAF flags, an appropriate clock cycle is necessary after $t_{\text {RTR }}$ to update these flags.

Ordering Information
64K x 9 Deep Sync FIFO

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
10	CY7C4282-10ASC	A64	64-Lead 10x10 Thin Quad Flatpack	Commercial
	CY7C4282-10ASI	A64	64-Lead 10x10 Thin Quad Flatpack	Industrial
15	CY7C4282-15ASC	A64	64-Lead 10x10 Thin Quad Flatpack	Commercial
25	CY7C4282-25ASC	A64	64-Lead 10x10 Thin Quad Flatpack	Commercial

128K x 9 Deep Sync FIFO

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
10	CY7C4292-10ASC	A64	64-Lead 10x10 Thin Quad Flatpack	Commercial
	CY7C4292-10ASI	A64	64-Lead 10x10 Thin Quad Flatpack	Industrial
15	CY7C4292-15ASC	A64	64-Lead 10x10 Thin Quad Flatpack	Commercial
25	CY7C4292-25ASC	A64	64-Lead 10x10 Thin Quad Flatpack	Commercial

Package Diagram

64-Pin Thin Plastic Quad Flat Pack (10 x $10 \times 1.4 \mathrm{~mm}$) A64

All product and company names mentioned in this document are the trademarks of their respective holders.

CYPRESS

Document History Page

Document Title: CY7C4282/CY7C4292 64K/128K $\times 9$ Deep Sync FIFOs with Retransmit and Depth Expansion Document Number: 38-06009

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
${ }^{* *}$	106470	$07 / 17 / 01$	SZV	Changed from Spec Number: 38-00594 to 38-06009
${ }^{*} \mathrm{~A}$	122261	$12 / 26 / 02$	RBI	Added power-up requirements to Maximum Ratings Information
${ }^{*} \mathrm{~B}$	127855	$08 / 25 / 03$	FSG	Removed Preliminary Switching Waveforms section: "Empty Flag Timing" tsKEW2 tShanged $^{\text {(typo) }}$

[^0]: Notes:
 2. $\mathrm{n}=$ Empty Offset ($\mathrm{n}=7$ default value).
 3. $m=$ Full Offset ($m=7$ default value).

